

СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ПРОЦЕССОМ СУШКИ ХЛОПКА НА ОСНОВЕ НЕЧЕТКОЙ ЛОГИКИ

Халматов Давронбек Абдуалимович Юлдашев Сурожиддин Хасанович Муродов Жўрабек Музаффарович

Ташкентский институт текстильной и легкой промышленности

Аннотация. Рассмотрены вопросы совершенствования системы управления процессом сушки хлопка на базе нейронечеткой технологии. Формализован процесс сушки хлопка в виде нейронной сети, позволяющей учесть различные виды неопределенностей, возникающих в процессе функционирования сушильного агрегата. Для обучения нейронной сети использованы данные, соответствующие технологическому регламенту.

Ключевые слова - нечеткая логика, нейронная сеть, функция принадлежности, нечеткая правила, лингвистические термы, базы знания, система управления, процесс - сушки хлопка.

В существующих технологических процессах переработки хлопка обязательным является сушка хлопка-сырца, так как основная часть сырца заготавливается при влажности, превышающей кондиционную. Еще на заготовительных пунктах в бунтах осуществляют ряд мер по снижению влажности хлопка-сырца. К этим мероприятиям следует отнести прорывание вентиляционных каналов и тоннелей в бунтах, отсос влажного воздуха из бунтов, разборку бунтов, просушку сырца и др.

Наиболее действенным методом доведения хлопка-сырца до технологической нормы влажности и обеспечения его нормальной очистки от сорных примесей и джинирования является сушка хлопка-сырца в сушилках [1...3].

В настоящее время на хлопкоперерабатывающих предприятиях стран СНГ наиболее широко распространены барабанные сушилки марок 2СБ-10, СБО и СБТ. Эти сушилки имеют высокие показатели по производительности влажного хлопка-сырца, но недостаточный влагоотбор.

В последнее время для управления различными технологическими процессами активно развивается принципиально новые законы регулирования, основанные на нейро - технология и нечеткой логики (Neuron&Fuzzy Logic) [1].

Это связано с тем, ЧТО многие технологические процессы характеризируются неопределенностью, нечеткостью, расплывчатостью. К относиться и процесс переработки хлопка-сырца, таким категориям разнообразием характеризируемый технологических регламентов перерабатываемых хлопков, неравномерные распределенностью теплоагента в сушильном барабане, нестационарностью динамических характеристик процесса сушки хлопка сырца [2]. В этих условиях для формализации процесса сушки хлопка-сырца наиболее удобной математической схемой является нейронной сети.

Использование нейронной сети позволяет реализовать подход к формированию функции принадлежности нечётких множеств. При выборе параметров функции принадлежности её формы и параметры настраиваются с применением алгоритмов обучения нейронной сети, получаемых из обучающей выборки, в которой аппроксимация экспериментальных данных осуществляется с помощью нечётких систем.

При этом нечётко-нейронная сеть может быть реализована отображением $\{\!(\bar{x}^i,y^i)\!\}$, где $\bar{x}^i=(x_1^i,...,x_n^i)$ - вектор входных значений, y^i - значение выхода $(i=\overline{1,N})$. Наиболее трудным этапом при использовании нечеткой логики в процессе управления является процесс обучения нейронов. Обучение нейронов осуществляется с использованием правила принятия решения, которое имеет следующий вид:

ЕСЛИ x_1 , есть \widetilde{A}_{1j} И x_2 есть \widetilde{A}_{2j} И... И x_n есть \widetilde{A}_{nj} ТО $y=z_i$, $j=\overline{1,m}$

где \widetilde{A}_{ii} - нечёткие числа, z_i - вещественные числа [3].

Для формирования правила принятия решения необходимо иметь базы знаний о предметной области, в которой используется нечетко-продукционная модель представления знаний. Для процесса сушки хлопка-сырца в качестве базы знаний берем количественные значения технологического регламента процесса сушки хлопка-сырца, которые позволяют выбирать режим работы сушильного агрегата. Выбор основывается на практическом анализе параметров перерабатываемого хлопка-сырца [4]. При этом за эталон берутся стандартные нормативные данные, предусмотренные технологическим регламентом (таблица 1.)

Таблица 1. Технологический регламент сушка хлопка

Хлопок Влажность (%)	сорт	Понижение влажности (%)	Производитель ность	Температур а сушильного агент	Плотность воздуха (мм.рт.ст)
12	1-3	3-4	11,0	130-135	412(42)
13	1-3	3-4	11,0	140-150	422(43)
14	1-3	5	11,0	160-170	432(44)
V	4-5	4	10	175	452(46)
15	1-3	6	10,5	190-200	442(45)
13	4-5	5	10	205	462(47)
16	1-3	7	10	210-220	452(46)
10	4-5	6	9	225	472(48)
17	1-3	8	9,5	240	462(47)
1/	4-5	7	9	245	482(49)
18	1-3	9	9	245	492(50)
10	4-5	8	8,5	250	492(50)

Для нечеткого управления процессом, необходимо ввести лингвистические переменные, которые хорошо согласуется с нечеткой логической схемой обработки информации. К ключевым понятиям нечеткой логики относится [3]:

- фаззификация (преобразование множества значений аргумента x в некоторую функцию и принадлежности M(x));
 - дефаззификация (процесс обратной фаззификации).

Система с нечеткой логикой функционирует по следующему принципу: информация с датчиков фаззифицируется, обрабатывается и затем в виде обычных сигналов подается на исполнительные устройства.

Рассмотрим принцип управления температурным режимом сушильного барабана с использованием нечеткой логики.

Режим сушки хлопка определяется разностью между температурой теплоагента и температурой уставки. Эта переменная лингвистически может быть сформулирована как «разность температур» и принимать значения «малая», «средняя» и «большая». Естественно, при большой разности температур подается больше теплоагента. На основе этого, определим вторую лингвистическую переменную - «скорость изменения температуры» в сушильном барабане. При большой скорости изменении температуры в сушильном барабане требуется подавать больше теплоагента. Выходной переменной при ЭТОМ является отработанный теплоагент, присваиваются следующие термы: «очень малая», «малая», «средняя», «большая» и «очень большая». Связь между входом и выходом барабана запишем в таблицу 2 с учетом нечетких правил.

Таблица 2.

Зависимость сушки хлопка от разности температур и скорость ее сушения

Скорость	Разность температур				
изменения	Малая	Специяя	Большая		
температуры	Iviajian	Средняя	Вольшая		

Малая	очень малая	малая	средняя
Средняя	малая	средняя	большая
Большая	средняя	большая	очень большая

Каждая запись соответствует своему нечетному правилу. Например, если разность температур «средняя», а скорость изменения «большая», то процесс сушки должен быть «большой».

Система управления сушильного барабана функционирующая с применением нечеткой логики работает по следующему принципу: Сигналы от датчиков будут фаззифицированы и полученные данные в виде сигналов поступают на заслонки вентилятора положения, которое будет меняться в соответствии со значением функции принадлежности. Построим функции принадлежности для «разность температур Δt » (рисунок 1) и для «скорость изменения температур V_t » (рисунок 2). Для первой функции диапазон температуры от 0 до 250 °C, а для второй от 0 до 0,23 С/мин.

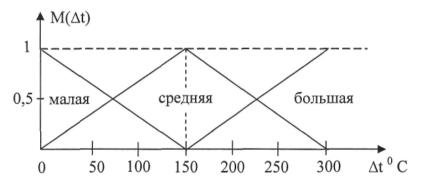


Рисунок 1. Функции принадлежности для лингвистического аргумент «разность

температуры»

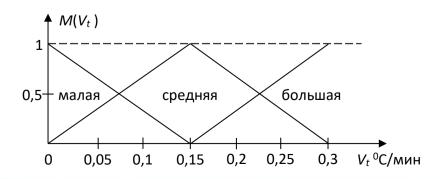


Рисунок 2. Функции принадлежности для лингвистического аргумента «Скорость изменения температуры».

Результат совместного влияния двух функции принадлежности $M_{\Sigma} = f[M(\Delta t), M(V_t)]$ значения выходного параметра на теплоагента определяется соответствующий программой, заложенной в логическое устройство. Учитывая, барабане что температура сушильном В пропорциональна положению заслонки вентилятора, то можно построить зависимость регулирующей функции принадлежности $M_{\scriptscriptstyle \Sigma}$ от положения заслонки, придав лингвистическим термам положения заслонки с рангом 1,0 следующими значениями (рисунок 3); малая - 15, средняя - 40, большая - 65 и очень большая - 90.

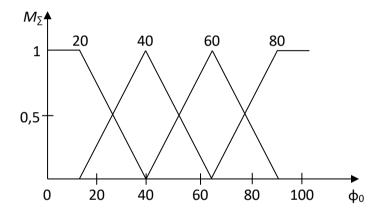


Рисунок 3. Зависимость параметра «положение затвора» от значения суммарной функции принадлежности.

Управление температурным режимом сушильного барабана хлопка - сырца с применением нечеткой логики позволяет учесть неопределенность и нечеткость изменения значений влажности и засоренности высушиваемого хлопка, что обеспечивает экономию расхода энергии (топлива), за счет уменьшения времени переходного процесса в динамическом режиме работы сушильной установки.

Достоверность полученных результатов проверяла проведением имитационных экспериментов и сравнением с реальными данными.

Литература

- [1] Jorg Kahlert. Fuzzy Control fur Ingenieure. Frider. Vieweg & Sonn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, 1995. -282 with.
- [2]Wang, L., Zhang, H. An adaptive fuzzy hierarchical control for maintaining solar greenhouse temperature//Computers and Electronics in Agriculture. 2018. 155, P. 251-256
- [3] Сиддиков И.Х., Сетметов Н.У, Каримов Д.Р. Особенности разработки компьютерной системы поддержки принятия решений при управлении хлопкоочистительными предприятиями // Химическая технология. Контроль и управление, №3. 2008. С. 87-90.
- [4] Осовский С. Нейронные сети для обработки информации. М: Финансы и статистика, 2002. 344 с: ил.
- [5] Сиддиков И.Х., Холматов Д.А. Некоторые вопросы прогнозирования и контроля параметров сушки хлопка сырца // Химическая технология. Контроль и управление, -№4.2007.-С. 49-51.