

STRATEGIES APPROACHES IN STUDENTS LEARNING

Sharofiddinova Robiya

robiyasharofiddinova25@gmail.com

Student

Uzbek State University of World Languages

Sobirova Feruza Islomjon qizi

f.sobirova@uzswlu.uz

Independent researcher

Uzbek State University of World Languages

Annotation: Students employ study habits, yet not all genuinely aid effective learning. Most of learners continue to depend on approaches that seem effective. Such as re-reading or highlighting. Despite evidence consistently indicating that these tactics do not foster long-term retention. This article examines learning methods and classifies them into "High Utility" and "Low Utility" groups, relying primarily on insights from cognitive psychology. A significant distinction arises between active learning. Passive methods frequently render the content seemingly familiar, creating an illusion of comprehension for learners. However, they fail to encourage the brain to encode the information. Conversely, active techniques. Including retrieval practice, spaced repetition, and interleaving. What experts' term "desirable difficulties." These mild obstacles, combined with the recognized "testing effect," in reinforcing connections and ensure more durable retention of the material. Overall, the article says students need to stop just taking in information and start actively working with it. This shift is key for getting better results and building long-term skills in any field.

Keywords: Student Learning, Retrieval Practice, Cognitive Psychology, Active Learning, Study Strategies, Distributed Practice.

Many learners continue to engage in passive study methods. Such, as repeatedly going over their notes highlighting nearly the entire textbook or simply reviewing lecture slides again. Sure, these routines seem effective at the time. When something appears familiar your mind somewhat deceives you into believing you've mastered it. However mere familiarity doesn't equate to comprehension. For years research in cognitive psychology has indicated this. Investigations by researchers such as Dunlosky and colleagues essentially demonstrate that these "easy" techniques are not very effective, for long-term retention of information. Learners invest effort yet the information diminishes quickly particularly when facing a major test or needing to use the learned material in a different context. So, the main point of this article is to break down which learning strategies actually work and which ones... don't. We'll look at the high-utility strategies — like spacing, retrieval practice, and mixing different types of problems — and compare them to the low-utility habits that most students still rely on. The whole idea is to give a clearer picture of how students can study smarter, not just harder.

Not all study techniques are effective. Numerous students merely go over the material repeatedly yet much of it fails to stick in their minds. A strategy that proves beneficial is retrieval practice also known as self-testing. Then repeatedly reviewing notes you attempt to recall the information independently. Flashcards, quizzes or simply jotting down what you recall are useful tools. It seems challenging indeed but that is the reason it succeeds. Simply reading may mislead you into believing you've understood it. Much of it is forgotten afterward.

An additional effective technique is distributed practice, also known as spacing. This involves studying in amounts daily rather than cramming all at once. For example dedicating thirty minutes each day over a week tends to be more effective, than spending three hours in a night. Spacing not only enhances memory retention but also prevents fatigue and confusion. Interleaving is beneficial as well. It involves alternating between subjects or types of problems, within a single study session. Rather than repeating the same problem multiple times, you vary them. This

approach helps you understand both how to solve problems and the appropriate situations to apply each technique. Elaboration involves clarifying concepts using your language or posing "why" inquiries. It aids in linking knowledge to what you are already familiar with. This approach enhances your ability to recall the information afterward. Some ways feel easy but do not help much. Re-reading notes many times can make it look familiar, but it doesn't make you remember it for real. Highlighting is similar — most people just color the text without thinking, so it doesn't help much. These ways can make you feel like you are learning, but your brain forgets most of it anyway.

The effective strategies tend to be active requiring you to engage directly. You need to respond to a question tackle a problem or attempt to recall information. Effective techniques tend to be passive, such as merely staring at the page or repeatedly reviewing your notes. Although passive learning feels simple, it doesn't truly help your brain retain information over time. Another concept is known as challenges. Studying ought to be challenging occasionally. For example, if anyone find it tough to recall an answer, on a practice test that's actually an indication. It shows your brain is engaging and learning is occurring. Conversely repeatedly reviewing notes feels effortless which is why it isn't very effective. Then there is the testing effect. Tests are not just for grades. Taking a test is actually a way to study. Every time you try to remember something, you kind of change it a little and make it stronger in your memory. So testing yourself, even if no one is checking it, is one of the best ways to learn. It might feel a little tiring, but it really works.

Conclusion. Not every study method is effective. Some outperform others significantly. Based on our observation's active techniques such as self-quizzing distributing study sessions over time and interleaving subjects genuinely improve memory retention. Passive approaches, like rereading notes or highlighting are ineffective despite seeming simple. Students should consider reducing reliance on highlighting. Instead adopt a technique known as "blank sheet retrieval." At that moment you grab a sheet of paper and attempt to jot down all the details you recall

about a subject without consulting your notes. It seems challenging indeed but that is intentional. This difficulty actually aids your brain in retaining information, for a period. For educators employing learning is beneficial. Rather than covering a topic just once and moving forward aim to revisit it multiple times throughout the semester. Repeatedly returning to previous material assists students in remembering and comprehending it more effectively. Using these ideas together might take more time and effort, but it really works. Students might feel it's harder at first, but in the end, it helps them learn way more than just reading or highlighting.

REFERENCES:

1. Dunlosky, J., et al. (2013). *Improving Students' Learning with Effective Learning Techniques: Promising Directions from Cognitive and Educational Psychology*. Journal: Psychological Science in the Public Interest
Link: <https://www.psychologicalscience.org/publications/journals/pspi/learning-techniques.html>
2. Freeman, S., et al. (2014). *Active learning increases student performance in science, engineering, and mathematics*. Journal: Proceedings of the National Academy of Sciences (PNAS)
Link: <https://www.pnas.org/doi/full/10.1073/pnas.1319030111>
3. Roediger, H. L., & Karpicke, J. D. (2006). *Test-enhanced learning: Taking memory tests improves long-term retention*. Journal: Psychological Science
Link: <https://pubmed.ncbi.nlm.nih.gov/16507066/>
4. Agarwal, P. K., et al. (2012). *The Value of Retrieval Practice for Classroom Learning*. Journal: Washington University in St. Louis (Education Guides)
Link: https://www.researchgate.net/publication/230709697_The_Value_of_Applied_Research_Retrieval_Practice_Improves_Classroom_Learning_and_Recommendations_from_a_Teacher_a_Principal_and_a_Scientist

5. Pan, S. C., & Rickard, T. C. (2018). *Spaced Retrieval Practice: A Meta-Analysis of its Effects on Memory Retention.*

Journal: Psychological Bulletin

Link: <https://psycnet.apa.org/record/2018-20773-001>