

CHANGES IN THE RESPIRATORY SYSTEM IN CHILDREN AGED 5-6 YEARS

Sadikova Zumrad Shavkatovna – professor

Xojanazarova Saule Djubatirovna - associate professor

Islamova Gulnara Raufovna – associate professor

Department of human anatomy and OSTA

Tashkent state medical university (Tashkent, Uzbekistan)

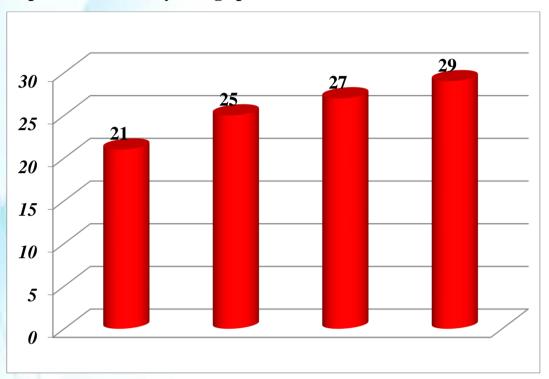
Abstract: The respiratory system consists of the respiratory tract and two lungs. The airways are divided into the upper and lower respiratory tract, depending on their location in the body. The upper respiratory tract includes the nasal cavity, the nasal and oral part of the khalkum, the lower respiratory tract include the hiccups, trachea (throat), bronchi, and lungs.he respiratory system consists of the respiratory tract and two lungs. The airways are divided into the upper and lower respiratory tract, depending on their location in the body. The upper respiratory tract includes the nasal cavity, the nasal and oral part of the khalkum, the lower respiratory tract include the hiccups, trachea (throat), bronchi, and lungs. It has a tubular structure characteristic of its activity, keeping its cavity at the same level as it is a bone and a humerus in the respiratory wall. The inner surface of the respiratory tract contains glands that synthesize a slime substance consisting of a mucous membrane, the surface of which is covered with a hovering epithelium. Therefore, the mucous membrane, in combination with its protective function, purifies the air and, warming up, humidifies the air in the airway.

Key words: Morphological changes, control group, children, observation group.

Introduction. The source of development of the respiratory organs is the prexordial plate and mesenchyma. The Prexordial plate will be the source of the formation of the epithelium, while the mesenchyma forms the hyoid and mucous muscle tissue, blood vessels in the wall of the organs of the respiratory system. The

neuroectodermal floor is involved in the dressing of endocrine cells in aloxia.he source of development of the respiratory organs is the prexordial plate and mesenchyma. The Prexordial plate will be the source of the formation of the epithelium, while the mesenchyma forms the hyoid and mucous muscle tissue, blood vessels in the wall of the organs of the respiratory system. The neuroectodermal floor is involved in the dressing of endocrine cells in aloxia. The respiratory system is considered to be a zone of formation in the development of a number of defects, therefore, in many cases, early diagnosis and treatment will allow to save the life of the fetus. Studies are known on the ultrasonic anatomy of the fetal lungs, and the topographic anatomy of the trachea and cephalic bronchi during the early fetal stage of human ontogenesis. A comprehensive analysis of the horizontal and frontal incisions of the thoracic cavity has shown that at this stage of ontogenesis, the principled position of the root elements (head bronchi, pulmonary artery, pulmonary vein) in the lung gate will be the same as in the case of older individuals.

The purpose of the study: Analysis of changes in the respiratory organs in children aged 5-6 years.

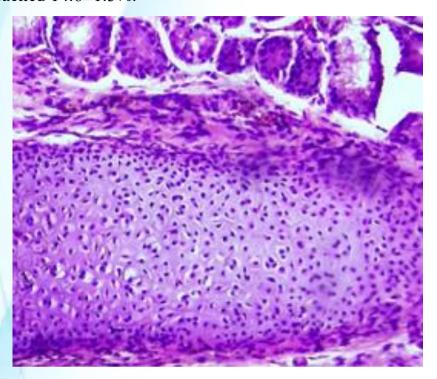

Research materials and methods: In order to achieve the goal set before us and to complete the tasks, autopsical materials were obtained from the remains of 55 first-child children in the postnatal ontogenetic stage of the pulmonary bronchi without diseases of the respiratory system. Examination at the Republican Center for patalogical Anatomy 2024-2025 The first adopted in the i-quarter was carried on the corpse of children in childhood. Children who died under the influence of various factors, but whose respiratory system did not change, were studied in children's corpses who died as a result of mainly heart defects and other causes that did not have diseases in the pulmonary bronchial tract.

Results of the study: It was observed that by the age of 5 years, due to an increase in the size of the single-layer prismatic epithelium, its thickness also slightly increased, averaging $6.3\pm1.2\%$. Similar dynamics were observed in the later months of the early postnatal period, with $7.4\pm1.3\%$ at age 6, and $8.2\pm1.4\%$ at 12 months.t was observed that by the age of 5 years, due to an increase in the size of the single-

MODERN EDUCATION AND DEVELOPMENT

layer prismatic epithelium, its thickness also slightly increased, averaging $6.3\pm1.2\%$. Similar dynamics were observed in the later months of the early postnatal period, with $7.4\pm1.3\%$ at age 6, and $8.2\pm1.4\%$ at 12 months.

It was found that the muscle layer thickened 1.4 times from the early postnatal period to the 5-6 year age period



From this quantitative data, to the general conclusion, it was found that the bronchial wall covering epithelium thickened slightly less than twice during the early postnatal period from one month to the 12th month. It is known that it was observed that the connective tissue private plate of the mucous membrane of the bronx wall has an unformed structure at the age of one month of infancy, its intermediate substance is dominated by nardon and edema processes, its thickness is 15.5±1.8% of the thickness of all layers of the bronx wall. In the following months of the early postnatal period, it was found that cells and fibrous structures in the unformed connective tissue in the mucosal private plate were relatively Evolute, resulting in a decrease in the tumor process in the intermediate, with its relative thickness at 3 months - 14.8±1.7%, at 6 months -13.2±1.7%, at 12 months - 11.8±1.6%. The smooth muscle floor of the bronchial wall was conversely observed to begin at one month in the early postnatal period and to become more regularly thickened in its later months by both the number and size of muscle cells, while at

10.5±1.5% in one month it was found to have thickened by 4% by the 12th month and reached 14.6±1.5%.

5 years of age. Trachea. The tracheal ring is thickened the number of glands has increased

Stained with hematoxylin-eosin. Magnified image at 10x40.

The mountain people are relatively thin and flat, have an immature structure in composition, that is, their cells are small, numerous and densely located, only some of them have been observed to appear vacuolated cytoplasm. It was found that the main substance of the mountain is dense and dark, from the inner and outer surface it is wrapped in tufts with connective tissue of the mountain peoples. Externally it is surrounded by a thin and swollen serous curtain. The mucous membrane is wrinkled, but the folds are flatter than the tracheal folds and have a small structure, the surface is found to be covered with a single-layer multi-row cylindrical epithelium. It was found that there were few goblet cells between the covering epithelium. It was observed that the basal membrane and the private plate consist of connective tissue with a large number of densely packed fibers, with a relatively low cell.he mucous membrane is wrinkled, but the folds are flatter than the tracheal folds and have a small structure, the surface is found to be covered with a single-layer multi-row cylindrical epithelium. It was found that there were few

MODERN EDUCATION AND DEVELOPMENT

goblet cells between the covering epithelium. It was observed that the basal membrane and the private plate consist of connective tissue with a large number of densely packed fibers, with a relatively low cell. It was found that on the mucous membrane, adjacent to a private plate, a junction of smooth muscle cells is located.

Conclusion: 1. It was found that the mucous membrane consists of a thin, light-colored, unformed connective tissue, the fibers and cells of which are very poorly swollen. There are serous-mucous glands located in the mucous membrane, compared to the trachea, it was observed that they have a low number and immature structure.

REFERENCES

- 1. Akinshin I.I., Sinelnikova Ye.V., Chasnыk V.G., Kornishina T.L. Issledovanie vzaimosvyazi ultrazvukovых fenomenov legkix s pokazatelyami gazoobmena u novorojdennых detey // Vizualizatsiya v meditsine. 2020. Т. 2. № 2. S. 8-17.
- 2. Altit G., Dansea A., Renaud K., Perreault T., Lands L.S., Santanna G. Patofiziologiya, skrining i diagnostika legochnoy gipertenzii u detey s bronxolegochnoy displaziey (obzor literaturы) // Neonatologiya: novosti, mneniya, obuchenie. 2017. № 1 (15). S. 24-38.
- 3. Amirova V.R., Valiulina A.Ya., Zalalova A.A., Rыbalko O.V. Sostoyanie zdorovya detey pervogo goda jizni, rodivshixsya nedonoshennыmi // Meditsinskiy vestnik Bashkortostana. 2019. Т. 14. № 1 (79). S. 69-77.
- 4. Basiy R.V., Vasilev V.A., Zdixovskiy I.A., Dovgyallo Yu.V., Beshulya O.A., Selivanova Ye.S. Anatomiya legkix // Vestnik gigienы i epidemiologii. 2018. Т. 22. № 4. S. 87-90.
- 5. Batman Yu. A., Polyakov K.V., Bessonov D. A., Pavlyuchenko V. V. Morfologicheskie osobennosti legochnoy tkani u nedonoshennых detey, obuslovlennыe bronxolegochnoy displaziey // Neonatologiya, xirurgiya i perinatalnaya meditsina. 2012. Т. II, №1(3). S.59-64.