

MODERN COMMUNICATION TECHNOLOGIES IN EMERGENCY-RESCUE OPERATIONS

Eshkuvatov Komil Ruziboyevich

Tashkent State Medical University, Teacher

e-mail: eshkuvatovkomil@gmail.com +99890-033-54-81

Student: Mukhitdinova Sevinch Khusniddinovna

Tashkent State Medical University

e-mail: sevinchmuxitdinova61@gmail.com

Abstract. This article examines the role of modern communication technologies in emergency-rescue operations, focusing on their effectiveness in disaster response, coordination, and decision-making. By analyzing current systems such as digital radio networks, satellite communications, cellular technologies, GIS-based platforms, and integrated command-and-control systems, the study highlights how communication tools improve situational awareness, reduce response times, and enhance the safety of rescue personnel. The research demonstrates that advanced communication systems have become the backbone of emergency management, ensuring stable information exchange in extreme conditions and enabling real-time monitoring, risk assessment, and resource allocation.¹

Keywords: Emergency communication; rescue operations; digital radios; satellite systems; disaster management; GIS; interoperability; command-and-control; situational awareness; communication networks; public safety.

Introduction. Modern emergency-rescue operations rely heavily on communication systems that ensure rapid, uninterrupted, and coordinated information flow.² Effective communication is essential for assessing hazards, deploying resources, maintaining contact with field teams, and protecting both rescuers and affected populations. With increasing frequency of natural and technological disasters, the demand for highly reliable communication tools has grown significantly.³ The aim of this research is to analyze the technologies that

support emergency communication and to evaluate their importance in improving operational efficiency and safety during rescue missions.

Main Modern depend Body. emergency-rescue operations on communication technologies designed to function in harsh environments, where traditional infrastructure may be damaged or overloaded. Digital radio systems, such as TETRA and APCO-25, provide secure, encrypted, and interference-resistant channels that allow responders to maintain stable contact during high-risk operations.⁴ These systems enable group calls, emergency signaling, and direct mode operation, which ensures communication even when base stations are down. Satellite communication systems play a critical role when terrestrial networks fail completely. Satellite phones and VSAT terminals ensure long-distance voice and data communication, supporting coordination between rescue headquarters and remote operational zones.⁵ Modern satellites provide broadband connectivity, enabling real-time video streaming, remote sensing, and data transfer essential for large-scale emergencies. Cellular technologies, including 4G/5G networks, are increasingly used due to their high bandwidth and widespread coverage. During disasters, mobile base stations, portable cell-on-wheels (COWs), and drone-mounted communication relays restore connectivity to affected areas. These tools allow rapid information sharing, mapping, and the use of mobile command applications. GISbased platforms significantly enhance situational awareness by integrating satellite imagery, terrain data, meteorological information, and resource tracking.7 GIS technologies support hazard modeling, victim localization, evacuation planning, and damage assessment. Combined with GPS tracking, they allow command centers to monitor rescue teams in real time.

Unmanned aerial vehicles (UAVs) equipped with cameras and sensors contribute to communication systems by delivering aerial data, establishing temporary networks, and relaying signals over inaccessible terrain.⁸ Integrated command-and-control (C2) systems unify communication channels, including radio, satellite, and mobile networks, into a single operational platform.⁹ These systems support data visualization, voice communication, and collaborative decision-

MODERN EDUCATION AND DEVELOPMENT

making, enabling multi-agency coordination among firefighters, medical teams, police units, and emergency services. Interoperability remains a key requirement in disaster response, as different agencies often use incompatible communication systems. Modern solutions such as software-defined radios (SDRs) and gateway interfaces bridge communication gaps and ensure seamless information flow. Finally, artificial intelligence and IoT-based sensors enhance communication by automating data collection, predicting hazards, monitoring environmental conditions, and transmitting alerts to command centers. Together, these technologies form a resilient communication ecosystem essential for effective emergency-rescue operations.

Conclusion. Modern communication technologies form the backbone of emergency-rescue operations, enabling rapid information exchange, real-time monitoring, and coordinated action among response teams. Digital radios, satellite systems, cellular networks, GIS platforms, UAVs, and integrated C2 systems significantly enhance operational efficiency and safety. Their combined use ensures stable communication even under extreme conditions, improves decision-making, and minimizes casualties.

As disasters become more complex, the development of resilient, interoperable, and intelligent communication systems will remain a critical component of emergency management.

REFERENCES

- 1. Haddow G., Bullock J. Introduction to Emergency Management. Elsevier, 2021.
- 2. Perry R., Lindell M. Emergency Planning. Wiley, 2020.
- 3. UNDRR. Global Assessment Report on Disaster Risk Reduction., 2022.
- 4. TETRA Association. TETRA Communication Standards. 2021.
- 5. ITU. Satellite Communication for Disaster Response., 2020.
- 6. FEMA. Mobile Network Restoration in Emergencies., 2021.
- 7. ESRI. GIS for Disaster Management., 2022.
- 8. FAA. Drone Use in Emergency Response., 2023.
- 9. DHS. Command and Control Systems in Public Safety., 2020.

MODERN EDUCATION AND DEVELOPMENT

ISSN 3060-4567

- 10. IEEE. Interoperable Communication Systems for First Responders., 2021.
- 11. World Bank. IoT and AI in Emergency Preparedness., 2023.