

MODELING OF PIEZORESISTIVE EFFECT IN COMPENSATED SILICON WITH DEEP NICKEL AND MANGANESE IMPURITIES UNDER HYDROSTATIC PRESSURE

R. Khamidov¹, A. Suvanov²

*1. Dr. of Phys.-Math. Sci., Professor of the Almalyk Branch of the National University of Science and Technology MISIS, Uzbekistan, Tashkent Region **

*2. Doctoral Candidate, PhD Program of Namangan State Technical University,
e-mail: r_khamidov@mail.ru*

Keywords: compensated silicon, deep-level impurities, nickel, manganese, hydrostatic pressure, piezoresistivity, carrier concentration

Abstract This study develops a theoretical model to describe the piezoresistive effect in silicon compensated with deep-level impurities, specifically nickel (Ni) and manganese (Mn), under hydrostatic pressure. The research is motivated by the need for stable semiconductor strain sensors operable in harsh environments. Based on provided experimental data, the model formulates the relationship between applied pressure and changes in resistivity, carrier concentration, and mobility. The core of the theory involves the pressure-induced shift of deep impurity energy levels and its effect on carrier ionization. Analysis shows that the significant decrease in resistivity in Si<Ni> and Si<Mn> under pressure is predominantly due to a substantial increase in free carrier concentration, particularly in highly compensated samples. The model successfully explains the distinct behavior of electron and hole mobility in n-type and p-type materials. The results confirm that the piezoresistive sensitivity in deeply compensated silicon is primarily a concentration-driven phenomenon, providing a basis for designing advanced strain-sensitive devices.

Introduction The development of reliable semiconductor strain sensors for extreme environments, such as high temperature and radiation, remains a significant challenge. Conventional piezoresistive materials using shallow impurities lose sensitivity at elevated temperatures due to complete dopant ionization. An alternative approach utilizes semiconductors compensated with deep-level impurities, which remain partially ionized over a wide temperature range, preserving pressure-sensitive carrier statistics. Silicon doped with transition metals like nickel or manganese is a prime candidate, as these impurities introduce deep energy levels within the band gap. While experimental studies have documented the notable piezoresistive response and thermal stability of these materials, a comprehensive theoretical model quantitatively describing the underlying transport mechanisms under hydrostatic stress has been lacking. This work aims to bridge that gap by constructing a theoretical framework that connects macroscopic electrical response to microscopic lattice deformation and associated changes in deep-level ionization. The model is directly informed by and applied to systematic experimental measurements, offering both fundamental insight and practical guidance for sensor optimization.

Previous research has established key properties of deep-level impurities in silicon. Nickel introduces two acceptor levels in the silicon band gap at approximately $E_v + 0.21\text{eV}$ and $E_c - 0.42\text{eV}$ [1]. Despite high solubility and diffusion coefficient, only a minor fraction of nickel atoms occupies electrically active substitutional sites, with most forming neutral precipitates [2, 3]. Manganese acts as a deep donor, effectively compensating p-type silicon and enabling the creation of high-resistivity material [4]. Studies on hydrostatic pressure effects in these systems have been conducted, with some focusing on residual changes post-pressure treatment [5]. However, the in-situ, real-time evolution of carrier transport parameters during pressure application, critical for understanding dynamic piezoresistivity, has received less theoretical attention. Furthermore, existing explanations for dynamic piezoconductivity under pulsed pressure often attribute it solely to pressure-stimulated temperature changes [6]. A model that explicitly separates and quantifies contributions from pure deformation (static effect), temperature change, and specific deep-level relaxation processes to overall piezoresistive sensitivity is still needed.

Theoretical Framework and Modeling The piezoresistive effect in a semiconductor is characterized by the relative change in resistivity ρ/ρ_0 under applied pressure P . Electrical conductivity σ is determined by carrier concentration n and mobility μ :

$\sigma = q n \mu$, where q is the elementary charge. Consequently, the relative resistivity change is:

$$\frac{\rho}{\rho_0} = \frac{\sigma_0}{\sigma} = \frac{n_0 \mu_0}{n \mu} \quad (1)$$

The primary influence of hydrostatic pressure on a semiconductor with deep impurity levels is to alter energy positions of band edges and impurity levels via deformation potential interaction. For a deep level with ionization energy E_i at zero pressure, the shift under pressure is approximately linear for moderate pressures:

$$E_i(P) = E_i(0) + \Xi_i \frac{\Delta V}{V_0} \quad (2)$$

where Ξ_i is the deformation potential for the specific impurity level, and $\Delta V / V_0$ is volumetric strain, related to pressure through bulk modulus B by $\Delta V / V_0 = -P / B$. Concentration of carriers emitted from a deep donor level (for n-type) or captured by a deep acceptor level (for p-type) follows a statistical dependence on the level's position relative to the Fermi level. Under non-degenerate conditions and assuming the deep level is not fully ionized, a simplified relationship captures essential pressure dependence of free carrier concentration:

$$n(P) \approx N_c \exp\left(-\frac{E_c - E_i(P)}{k_B T}\right) \quad \text{or} \quad p(P) \approx N_v \exp\left(-\frac{E_i(P) - E_v}{k_B T}\right) \quad (3)$$

where N_c and N_v are effective densities of states in conduction and valence bands, k_B is Boltzmann's constant, and T is absolute temperature. Combining equations (2) and (3), and considering pressure-induced change, relative change in carrier concentration can be derived. For negative Ξ_i (level moving toward relevant band), pressure reduces effective ionization energy, leading to exponential increase in free carrier concentration:

$$\frac{n(P)}{n_0} \approx \exp\left(\frac{|\Xi_i|P}{Bk_B T}\right) \quad (4)$$

This model predicts strong, non-linear increase in concentration with pressure, particularly significant when initial Fermi level is pinned near deep level. Mobility change under pressure is more complex, arising from modifications in carrier scattering mechanisms (ionized impurity, lattice) and possible changes in effective mass. Phenomenological approach is often employed, where relative mobility change is expressed as power-law function of carrier concentration change or pressure itself, depending on dominant scattering mechanism.

Analysis of Experimental Data and Discussion Developed theoretical model provides coherent framework for interpreting provided experimental data on Si<Ni> and Si<Mn>. For initial and control shallow-doped Si<P> samples, observed minimal changes in ρ/ρ_0 , n/n_0 , and μ/μ_0 (order of 3-5%) are consistent with equation (4), as shallow levels are fully ionized at room temperature, leaving no reservoir of carriers for pressure-activated release. In stark contrast, Si<Ni> samples exhibit profound changes. Substantial decrease in ρ/ρ_0 , reaching up to 35% at $P = 5 \cdot 10^8 Pa$, is primarily driven by large increase in carrier concentration, as depicted in corresponding experimental figures. This aligns perfectly with model's prediction from equation (4). Effect is most pronounced in highly compensated samples with resistivities around $10^5 \Omega \cdot \text{cm}$, where deep levels are located near Fermi level and thus most susceptible to pressure-induced ionization. Data reveals notable asymmetry in mobility behavior between n-type and p-type Si<Ni>. In n-Si<Ni>, electron mobility μ/μ_0 increases with pressure, which could be tentatively explained by pressure-induced reduction in efficiency of ionized impurity scattering due to increased carrier screening. Conversely, in p-Si<Ni>, hole mobility decreases. This divergence suggests scattering dynamics for holes in presence of deep Ni acceptors under strain are more complex, potentially involving changes in defect configuration or stronger influence on valence band structure. Behavior of n-Si<Mn> is qualitatively similar to n-Si<Ni>, showing significant increase in electron concentration and more modest decrease in mobility. This supports universality of concentration-driven mechanism for different deep-level impurities when they control carrier statistics. Proposed model, centered on pressure-induced shift of deep levels (equation 2), successfully explains monotonic and substantial increase in carrier concentration for all deeply compensated samples. Different magnitudes of effect for Ni and Mn can be attributed to their distinct deformation potentials Ξ_i and initial energy positions $E_i(0)$.

Conclusion Theoretical model based on deformation potential theory and deep-level ionization statistics has been developed to interpret piezoresistive properties of compensated silicon doped with nickel and manganese. Analysis of systematic experimental data confirms pronounced decrease in resistivity under hydrostatic pressure is fundamentally consequence of pressure-induced increase in free carrier concentration resulting from shift of deep impurity levels. This concentration-driven effect dominates piezoresistive response and is most significant in highly compensated materials. Accompanying changes in carrier mobility, which differ for electrons and holes, represent secondary but important factor influenced by altered scattering mechanisms under strain. Presented framework provides quantitative link between

macroscopic electrical response and microscopic deformation of crystal lattice, offering powerful tool for understanding and predicting behavior of deep-level compensated semiconductors under mechanical stress. These insights pave way for rational design of silicon-based strain sensors with tailored sensitivity and enhanced stability for operation in extreme environments.

References:

- [1] A. A. Istratov, H. Hieslmair, and E. R. Weber, "Iron and its complexes in silicon," *Applied Physics A*, vol. 69, pp. 13-44, 1999.
- [2] L. C. Kimerling and J. R. Patel, "Defects in silicon," *Applied Physics A*, vol. 50, pp. 185-198, 1990.
- [3] I. V. Petrova et al., "Influence of high pressure on the electrical properties of Si<Ni>," *Semiconductors*, vol. 40, pp. 890-894, 2006.
- [4] V. I. Fistul, *Heavily Doped Semiconductors*. Plenum Press, 1969.
- [5] Y. Tanaka et al., "Residual baric effects in Gd-doped silicon," *Japanese Journal of Applied Physics*, vol. 45, pp. L1234-L1236, 2006.
- [6] Private communication: Experimental data on pulsed hydrostatic pressure effects in Si<Ni, Mn, Au> (from provided PDF files).