

**APPLICATION OF CAD/CAM SYSTEMS IN THE MANUFACTURING
OF ORTHOPEDIC DENTAL STRUCTURES**

Osmanova Safiya 4th year

Guseynova Sabina Tagirovna,

Doctor of Medical Sciences, Head of the Department of

Human Anatomy Dagestan State Medical University

Akhmedov Alisher Astanovich

Assistant Department of orthopedic dentistry Samarkand State

Medical University Samarkand, Uzbekistan.

Imagine that in one step you make an impression, simulate a restoration and install a crown for the patient. Fiction? No, this is the same CAD/CAM system — Computer Assisted Design/Computer Aided Manufacturing or a system for computer modeling and manufacturing dentures.

CAD/CAM technologies and system components

In CAD/CAM, CAD technologies are computer programs that are involved in creating a 3D model of a tooth or dental system. CAM is a software program that works on creating a physical object — a crown of the same tooth and restoration of the dental system.

According to CAD/CAM technology, prosthetics are performed in four stages.

- Scanning of the oral cavity to create a virtual 3D model. At this stage, the main component of the system is an intraoral scanner. It reads the geometry of the prosthetic section of the dentition and converts it into a digital model.

- Prosthetic modeling. At this stage, the dentist sees a 3D model of the prosthetic area on the monitor, selects restoration options and corrects their shape, curvature, wall thickness and appearance. The intermediate and final results can be compared

and agreed with the patient.

- Milling. The 3D model is transferred to the CAM module of the milling machine, which grinds out the restoration, polishes and grinds it. The functionality of the machine depends to a certain extent on the number of axes. The more of them there are, the more complex restorations can be made. For example, the VHF N4+ four-axis milling machine processes the workpiece along the XYZ axes and simultaneously rotates it 360° along the A axis. In the VHF K5 model, a rotational B axis with a machining angle of $\pm 35^\circ$ is also added to the XYZ and A axes.

- The finished prosthesis can be tried on or immediately installed, for example, during simultaneous implantation.

CAD/CAM systems in dentistry are divided into closed and open. The closed ones interact with the scanner and the machine as part of a common software, use a single, encrypted file format, and work with specific types of materials. As an example, the Italian Zirkonzahn system.

Open CAD/CAM technologies integrate with different modules and components, work with files of several formats. Simply put, a doctor can scan the dentition with an intraoral scanner 3Shape TRIOS 3 Basic Pod, save the file in the format .STL, using the Model Builder module, create a laboratory crown model and send it to the VHF N4+ milling machine. Thus, for open systems, a dentist can choose a scanner from one manufacturer, and a milling machine from another — everything will work. Open CAD/CAM technologies include Exocad Dentalcad, InLab SW, Planmeca, Dental System, etc.

How to switch to CAD/CAM technologies and calculate the payback of the

system

The simplest way to evaluate the payback of the system is to calculate the ROI, that is, the difference between income and investments. ROI (return on investment) is calculated using the formula:

$$(\text{income} - \text{investment}) / \text{investment} \times 100\%$$

Revenue is taken as revenue for the amount of restorations that you can do with CAD/CAM systems in the clinic. Let's say orthopaedists are currently sending X veneers and Y single crowns per month to milling centers and laboratories. With CAD/CAM, you can do this amount yourself. The proceeds from metal restorations, which can be milled on a machine, will also go to the income. The projected increase in the volume of restoration work can also be attributed to income. For example, when there is demand, but due to a lack of opportunities, patients were redirected to other clinics. In addition, with CAD/CAM, you can expand the range of restorations and this should also be taken into account in the projected income.

Investments include the cost of the CAD/CAM system itself, additional training for doctors, materials (blocks and discs, milling cutters, ceramic masses), small consumables, scheduled maintenance.

To figure out the costs directly for CAD/CAM, evaluate the current and projected types of restorations. For veneers, bridges, onlays, inlays, crowns, abutments and most dental frameworks, the functionality of four-axis machines is sufficient. Five-axis ones are needed for complex beam structures on screw-mounted implants. If such restorations are rare in your clinic, you can use a four-axis milling cutter, and install complex prostheses in a dental laboratory as before.

As for the type of system, it's better to start with an open one. It allows gradually and without large-scale one-time investments to transfer orthopedics to CAD/CAM technology. For example, you can start with an intraoral scan, sending the models to the laboratory. Then buy a milling machine for the manufacture of metal-free structures, glass ceramics and composite prostheses. Further, as the customer base grows and demand for rare or expensive prostheses increases, we will launch a full-cycle system with the production of titanium and cobalt-chromium structures.

Scanner

The scanner is needed to create a virtual 3D model of the patient's teeth. There are both intraoral scanners that "digitize" the situation in the oral cavity directly, and conventional ones that scan pre-made plaster models of the patient's jaws.

Computer with software

The resulting three-dimensional model of the patient's teeth is processed in a computer program, where a virtual model of future restoration (inlays, crowns, or veneers) is created in automatic (or semi-automatic) mode for the destroyed tooth, which is necessary to repair the defect. The interface of the CAD/CAM program is

similar to a three-dimensional editor. The doctor has the opportunity to create or change any element of the simulated restoration: the height of the bump, the severity of the relief, the curvature of the walls, etc. When the modeling is completed, the file with the restoration model is sent to the milling machine.

Milling machine

The restoration, which was modeled at the previous stage, is automatically turned out on a milling machine. Standard blanks are used as the material.

Currently, the technique of modeling and manufacturing precision parts for various purposes using CAD/CAM technologies has found wide application in dentistry all over the world.

The main advantage of the CAD-CAM system is the high quality of the manufactured prostheses with maximum accuracy. The prostheses obtained in this way have a deviation of 15-20 microns compared to 50-70 microns during casting.

List of used literature:

1. Asrorovna, X. N., Baxriddinovich, T. A., Bustanovna, I. N., Valijon O'g'li, D. S., & Qizi, T. K. F. (2021). Clinical Application Of Dental Photography By A Dentist. *The American Journal of Medical Sciences and Pharmaceutical Research*, 3(09), 10-13.
2. Ugli, A. A. A., & Bustanovna, I. N. (2024). STUDY OF THE CONDITION OF PARODONT IN PERIODONTITIS IN FETAL WOMEN. *European International Journal of Multidisciplinary Research and Management Studies*, 4(05), 149-156.
3. Kizi, J. O. A., & Bustanovna, I. N. (2024). FAMILIARIZATION WITH THE HYGIENIC ASSESSMENT OF THE CONDITION OF THE ORAL MUCOSA IN ORTHOPEDIC TREATMENT. *European International Journal of Multidisciplinary Research and Management Studies*, 4(05), 89-96.
4. Bustanovna, I. N. (2024). Determination of the Effectiveness of Dental Measures for the Prevention of Periodontal Dental Diseases in Workers of the Production of Metal Structures. *International Journal of Scientific Trends*, 3(5), 108-114.
5. Bustanovna, I. N. (2022). Assessment of clinical and morphological changes in the oral organs and tissues in post-menopause women. *Thematics Journal of Education*, 7(3).
6. Bustanovna, I. N., & Berdiqulovich, N. A. (2022). ПРОФИЛАКТИКА И ЛЕЧЕНИЯ КАРИЕСА У ПОСТОЯННЫХ ЗУБОВ. *JOURNAL OF BIOMEDICINE AND PRACTICE*, 7(1).

7. Bustanovna, I. N. (2024). PATHOGENESIS OF PERIODONTAL DISEASE IN ELDERLY WOMEN. *Лучшие интеллектуальные исследования*, 21(3), 25-29.
8. Bustanovna, I. N. (2024). TO STUDY THE HYGIENIC ASSESSMENT OF THE CONDITION OF THE ORAL MUCOSA DURING ORTHOPEDIC TREATMENT. *Лучшие интеллектуальные исследования*, 21(1), 9-15.
9. Bustanovna, I. N. (2024). CLINICAL AND LABORATORY CHANGES IN PERIODONTITIS. *Journal of new century innovations*, 51(2), 58-65.
10. Bustanovna, I. N. (2024). Morphological Changes in Oral Organs and Tissues in Women after Menopause and their Analysis. *International Journal of Scientific Trends*, 3(3), 87-93.
11. Bustanovna, I. N. (2024). Hygienic Assessment of The Condition of The Oral Mucosa After Orthopedic Treatment. *International Journal of Scientific Trends*, 3(3), 56-61.
12. Bustanovna, P. I. N. (2024). Further Research the Features of the Use of Metal-Ceramic Structures in Anomalies of Development and Position of Teeth. *International Journal of Scientific Trends*, 3(3), 67-71.
13. Bustanovna, I. N. (2024). The Effectiveness of the Use of the Drug "Proroot MTA" in the Therapeutic and Surgical Treatment of Periodontitis. *International Journal of Scientific Trends*, 3(3), 72-75.
14. Bustanovna, P. I. N. (2024). Research of the Structure of Somatic Pathology in Patients with Aphthous Stomatitis. *International Journal of Scientific Trends*, 3(3), 51-55.
15. Bustanovna, I. N., & Abdusattor o'g, A. A. A. (2024). Analysis of Errors and Complications in the Use of Endocal Structures Used in Dentistry. *International Journal of Scientific Trends*, 3(3), 82-86.
16. Bustanovna, I. N. (2024). Complications Arising in the Oral Cavity after Polychemotherapy in Patients with Hemablastoses. *International Journal of Scientific Trends*, 3(3), 62-66.
17. Bustanovna, I. N., & Sharipovna, N. N. (2023). Research cases in women after menopause clinical and morphological changes in oral organs and their analysis. *Journal of biomedicine and practice*, 8(3).
18. Bustanovna, I. N., & Sharipovna, N. N. (2023). Essential Factors Of Etiopathogenesis In The Development Of Parodontal Diseases In Post-Menopasis Women. *Eurasian Medical Research Periodical*, 20, 64-69.
19. Fakhriddin, C. H. A. K. K. A. N. O. V., Shokhruh, S. A. M. A. D. O. V., & Nilufar, I. S. L. A. M. O. V. A. (2022). ENDOKANAL PIN-KONSTRUKSİYALARINI ISHLATISHDA ASORATLAR VA XATOLAR TAHLILI. *JOURNAL OF BIOMEDICINE AND PRACTICE*, 7(1).

20. Очилов, Х. У., & Исламова, Н. Б. (2024). Особенности артикуляции и окклюзии зубных рядов у пациентов с генерализованной формой повышенного стирания. *SAMARALI TA'LIM VA BARQAROR INNOVATSIYALAR JURNALI*, 2(4), 422-430.

21. Ortikova, N., & Rizaev, J. (2021, May). The Prevalence And Reasons Of Stomatophobia In Children. In *E-Conference Globe* (pp. 339-341).

22. Ortikova, N. (2023). ANALYSISOF ANESTHESIA METHODS FOR DENTAL FEAR AND ANXIETY. *Центральноазиатский журнал академических исследований*, 1(1), 8-12.

23. Ortikova, N. K. (2023). DENTAL ANXIETY AS A SPECIAL PLACE IN SCIENTIFIC KNOWLEDGE. *SCHOLAR*, 1(29), 104-112.

24. Исламова, Н. Б. (2024). ПАРОДОНТ КАСАЛЛИКЛАРИДА ОРГАНИЗМДАГИ УМУМӢ ЎЗГАРИШЛАРНИ ТАҲЛИЛИ ВА ДАВОЛАШ САМАРАДОРЛИГИНИ ТАКОМИЛЛАШТИРИШ. *ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ*, 43(7), 18-22.

25. Islamova, N. B., & Chakkonov, F. K. (2021). Changes in the tissues and organs of the mouth