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Annotatsiya: Sun’iy neyron tarmoqlarining samarali ishlashi ularning o‘rgatish
jarayonida qo‘llaniladigan optimizatsiya algoritmlarining samaradorligiga bevosita
bog‘liqdir. Ushbu maqolada gradient tushunchasi, klassik Gradient Descent,
shuningdek Adam optimizer, RMSProp va Adagrad kabi zamonaviy adaptiv
optimizatsiya metodlari nazariy va amaliy jihatdan tizimli tahlil gilinadi. Tadgigqotda
gradientning neyron tarmogqlarini o‘rgatish jarayonidagi asosiy roli, konvergensiya
tezligi, o‘rganish barqarorligi va xatolik funksiyasini minimallashtirish mexanizmlari
yoritiladi.

Magolada shuningdek, algoritmlarning amaliy qo‘llanilishi, hiperparametrlarni
optimallashtirish strategiyalari, o‘rgatish jarayonini tezlashtirish va katta hajmdagi
ma’lumotlarda samarali o‘rganish imkoniyatlari tahlil qilinadi. Tadqiqot natijalari
shuni ko‘rsatadiki, adaptiv optimizatorlar va zamonaviy gradient asosli metodlar
neyron tarmogqlarini tezrog konvergensiya gilinishini, xatolikni minimallashtirishni va
o‘rganish barqarorligini sezilarli darajada oshirish imkonini beradi. Ushbu yondashuv
sun’1y intellekt tizimlarida samarali o‘rgatish, murakkab modellarda xatolikni nazorat
qilish va ilg‘or mashinaviy o‘rganish strategiyalarini ishlab chiqishda muhim ilmiy-

amaliy ahamiyatga ega.
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Abstract: The efficiency of artificial neural networks (ANNS) is directly
dependent on the effectiveness of the optimization algorithms applied during their
training. This article provides a systematic theoretical and practical analysis of gradient
concepts, classical Gradient Descent, and modern adaptive optimization methods such
as Adam, RMSProp, and Adagrad. The study highlights the fundamental role of
gradients in training neural networks, the convergence speed, learning stability, and
mechanisms for minimizing loss functions.

Furthermore, the article examines the practical application of these algorithms,
strategies for hyperparameter optimization, acceleration of the training process, and the
potential for effective learning with large-scale datasets. The results indicate that
adaptive optimizers and modern gradient-based methods significantly enhance
convergence speed, reduce training error, and improve learning stability in neural
networks. This approach has substantial scientific and practical significance for
efficient training in artificial intelligence systems, error control in complex models, and
the development of advanced machine learning strategies.

AnHoTamus: O(Q(DEKTUBHOCTh pabOThl HCKYCCTBEHHBIX HEMPOHHBIX CETel
(MHC) mnampsmyto 3aBUCUT OT 3(P(EKTUBHOCTH aQJITOPUTMOB ONTUMHU3ALINH,
MpPUMEHSIEMbIX B TMpoliecce uX o0OydeHus. B gaHHOW cTaThe MPOBOAUTCS
CUCTEMATUYECKUM  TEOPETUKO-NIPAKTUYECKUM  aHAW3  IOHATHUM  T'paJUEHTa,
KJaCCHYECKOro Merojaa rpamueHTHOro cmycka (Gradient Descent), a Ttakke
COBPEMEHHBIX aJalNTHBHBIX METOIOB ONTHMHU3alnu, Takux kak Adam, RMSProp u
Adagrad. HccrnenoBanue oOCBemaeT KIIOYEBYIO pOJIb TPAJUCHTOB B IIpOIECcCe
0o0yueHHsT HEHPOHHBIX CETEH, CKOPOCTh CXOAUMOCTH, YCTOMYMBOCTH OOyYCHHUS H
MEXaHN3Mbl MUHUMHAU3AIIUN (l)yHKHI/II/I IMOTEPL.

KpOMe TOro, CTaTbgd pacCMATpUBACT IIPAKTHYCCKOC MPHUMCHCHHUE OTHX
QJITOPUTMOB, CTPATETHHM OITUMHU3ALUUA TUIEPHAPAMETPOB, YCKOPEHHE IIpoIecca
00y4eHUs U BO3MOXKHOCTH 3(DPEKTUBHOTO 00yUYeHUsI Ha OOJIbIINX 00beMaXxX JaHHBIX.
PCSYJ'IBTaTBI HCCICAOBAHUA IIOKA3bIBAKOT, 4YTO AaAAIITUBHBIC OIITHMHU3ATOPbI H

COBPEMCHHBIC MCETOABLI Ha OCHOBE I'paJUCHTAa CYIICCTBCHHO ITOBBLIIIAIOT CKOPOCTDH
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CXOJUMOCTH, CHIDKAIOT OMMUOKH OOYyYCHHS U YJIYyYIIAIOT YCTONYMBOCTh HEHPOHHBIX
ceteil. Takoil MOAX0A UMEET 3HAUUTENILHOE HAYYHOE U MPAKTUYECKOE 3HaYeHUe s
3¢ (heKTUBHOTO O0y4YeHHs] B CHUCTEMaX MCKYCCTBEHHOTO WHTEIJIEKTa, KOHTPOJISA
OIMMOOK B CIIOKHBIX MOJIEISIX W pa3paOOTKH MPOJIBUHYTHIX CTPATETHl MAIIMHHOTO
oOyueHus.

Kalit so‘zlar: sun’iy neyron tarmoqlar, gradient tushunchasi, Gradient
Descent, Adam optimizer, RMSProp, Adagrad, optimizatsiya algoritmlari,
mashinaviy o‘rganish, o‘rgatish algoritmlari

Keywords: artificial neural networks, gradient concept, Gradient Descent,
Adam optimizer, RMSProp, Adagrad, optimization algorithms, machine
learning, training algorithms

KiioueBblie ci10Ba: HCKYCCTBEHHbI€ HE{POHHBbIE CEeTH, MOHATHE TPATUEHTA,
rpajdeHTHBIl cnmyck, ontumu3zatop Adam, RMSProp, Adagrad, aaropurmsbl
ONTHUMU3AIUHN, MAIIMHHOE 00y4YeHHe, AJITOPUTMbI 00yYeHH s

Kirish

Sun’iy neyron tarmogqlar (SNT) bugungi kunda sun’iy intellekt va mashinaviy
o‘rganish sohasida markaziy texnologiya hisoblanadi. Ularning samarali ishlashi
ko‘pincha optimizatsiya algoritmlarining sifatiga bevosita bog‘liq bo‘lib, bu
algoritmlar tarmoqning o‘rgatish jarayonini boshqgaradi, xatolikni minimallashtiradi va
modelning konvergensiyasini tezlashtiradi. Gradient tushunchasi esa neyron
tarmoglarini o‘rgatishda markaziy rol o‘ynaydi, chunki u yo‘qotish funksiyasining
minimum nuqtasini topishga yordam beradi.

An’anaviy Gradient Descent algoritmi va uning variantlari (masalan, Stochastic
Gradient Descent) ko‘p hollarda samarali bo‘lsa-da, zamonaviy murakkab va chuqur
neyron tarmoqlarda ular konvergensiya tezligini va barqarorligini ta’minlashda
cheklovlarga duch keladi. Shu sababli adaptiv optimizatsiya metodlari — Adam,
RMSProp, Adagrad kabi algoritmlar — keng qo‘llaniladi. Ular o‘rganish tezligini
dinamik tarzda moslashtirish, gradientlarning siljishlariga nisbatan bargarorlik yaratish

va murakkab model strukturalarida xatolikni minimallashtirish imkonini beradi.
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Ushbu maqolada SNT ni o‘rgatishda gradient tushunchasi, klassik Gradient
Descent va adaptiv optimizatsiya algoritmlari ilmiy va amaliy jihatdan tahlil gilinadi.
Shuningdek, algoritmlarning amaliy qo‘llanilishi, hiperparametrlarni sozlash
strategiyalari va o‘rgatish jarayonini tezlashtirish usullari yoritiladi. Bu kirish gismi
magolani xalgaro auditoriya uchun tushunarli, izchil va ilmiy asoslangan tarzda
tayyorlashga xizmat giladi.

Asosiy qism

Gradient tushunchasi sun’iy neyron tarmoqlarini o‘rgatish jarayonida
markaziy ahamiyatga ega. Gradient — bu yo‘qotish funksiyasining parametrlar
bo‘yicha gisman hosilasi bo‘lib, u model parametrlari (og‘irliklar va biaslar)
qiymatini yangilash yo‘nalishini belgilaydi. Neyron tarmogqlarini o‘rgatishda
asosiy maqgsad — yo‘qotish funksiyasini minimallashtirish, ya’ni modelning

bashorat xatolarini kamaytirish.

Klassik Gradient Descent (GD) algoritmi har bir parametrni quyidagi formula
bo‘yicha yangilaydi:

Or+1 = 0 —nVeL(6;)

bu yerda 6,— tarmoq parametrlari, n — o‘rganish tezligi (learning rate),
VoL(6;)— yo‘qotish funksiyasining gradienti.

GD va uning variantlari (Stochastic Gradient Descent, Mini-batch Gradient
Descent) oddiy va intuitiv bo‘Isa-da, ular chuqur va katta hajmdagi neyron tarmoglarda
ba’zan sekin konvergensiya qilishi yoki lokal minimumlarda qolishi mumkin.

Murakkab neyron tarmogqlarni samarali o‘rgatish uchun adaptiv optimizatsiya
algoritmlari keng qo‘llaniladi. Ular gradientning o‘zgarmas yo‘nalishini va o‘rganish
tezligini parametrlar bo‘yicha moslashtiradi. Eng mashhurlari quyidagilardir:

Adam optimizer: Adam (Adaptive Moment Estimation) algoritmi gradientning
birinchi va ikkinchi momentlarini hisobga oladi. Bu tarmoqg parametrlari uchun
o‘rganish tezligini dinamik tarzda moslashtirish imkonini beradi va xatolikni tezroq
minimallashtirishga yordam beradi. Parametrlarni yangilash formulasi quyidagicha

ifodalanadi:
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n__
Ot41= 0 ———m,

U +€

bu yerda m; va U,— bias to‘g‘rilangan birinchi va ikkinchi momentlar, €—
kichik bargarorlik konstantasi.

RMSProp: RMSProp algoritmi o‘rganish tezligini gradientlarning kvadrat
o‘rtacha giymatiga qarab moslashtiradi, bu esa past gradientlarda tezlikni oshiradi,
baland gradientlarda esa sekinlashtiradi. Shuning natijasida konvergensiya barqgaror va
tezrog amalga oshadi.

Adagrad: Adagrad algoritmi har bir parametr uchun individual o‘rganish
tezligini hisoblaydi, kichik gradientli parametrlar uchun o‘rganish tezligini oshiradi,
katta gradientli parametrlar uchun esa pasaytiradi. Bu, aynigsa, sekin o‘rganiladigan
yoki noaniq gradientlarga ega parametrlar uchun foydali hisoblanadi.

Neyron tarmoqlarni muvaffaqiyatli o‘rgatishda hiperparametrlarni to‘g‘ri tanlash
muhimdir. Ular orasida learning rate, batch size, optimizer tanlovi va moment
parametrlarining mosligi asosiy o‘rin tutadi. Yaxshi sozlangan hyperparametrlar
konvergensiya tezligini oshiradi, yo‘qotish funksiyasini minimallashtirishni
tezlashtiradi va o‘rganish jarayonini bargaror giladi.

Shuningdek, adaptiv optimizatorlar yordamida katta hajmdagi ma’lumotlarda
samarali o‘rganish, gradient siljishlaridan keladigan noaniqliklarni kamaytirish va
overfitting xavfini kamaytirish mumkin.

Algoritmlarning amaliy qo‘llanilishiga to’xtaladigan bo’sak. Zamonaviy
tadgiqotlarda Adam va RMSProp optimizerlari konvolyutsion neyron tarmoglarda
(CNN), rekurrent neyron tarmoglarda (RNN, LSTM) va Transformer arxitekturasi
asosidagi modellarda samarali go‘llanilmoqda. Bu algoritmlar tarmoqlarni tezroq
o‘rgatish, yo‘qotish funksiyasini minimal darajaga yetkazish va modelning
bargarorligini oshirishga xizmat giladi.

Quyidagi misol oddiy neyron tarmoqni MNIST ragamlar ma’lumotlar bazasida

o‘rgatish va turli optimizatorlarni solishtirishni ko‘rsatadi.

# Kerakli kutubxonalarni chagirish
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import tensorflow as tf

from tensorflow.keras.datasets import mnist

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.optimizers import SGD, Adam,

RMSprop, Adagrad

# Ma'lumotlarni yuklash va oldindan ishlash
(x_train, y train), (x test, y test) = mnist.load data()
x_train, x test = x train / 255.0, x test / 255.0 #

Normalizatsiya

# Oddiy neyron tarmog arxitekturasi
def create model () :
model = Sequential ([
Flatten (input shape= (28, 28)),
Dense (128, activation='relu'),
Dense (10, activation='softmax')
1)

return model

# Optimizerlar ro'yxati

optimizers = {
'SGD': SGD(learning rate=0.01),
'"Adam': Adam(learning rate=0.001),
'RMSProp': RMSprop (learning rate=0.001),
'Adagrad': Adagrad(learning rate=0.01)

# Har bir optimizator uchun modelni o‘rgatish va baholash
for name, opt in optimizers.items|() :

model = create model ()
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model.compile (optimizer=opt,
loss="'sparse categorical crossentropy',
metrics=['accuracy'])
print (f"\n--- {name} bilan o‘rgatish ---")
history = model.fit(x train, y train, epochs=5,
batch size=128, verbose=1l,
validation data=(x test, y test))
test loss, test acc = model.evaluate(x test, y test,
verbose=0)
print (f"{name} test anigligi: {test acc:.4f}")
Kod izohlab o’tadigan bo’lsak
sGD — klassik Gradient Descent optimizatori.
Adam, RMSProp, Adagrad — adaptiv optimizatorlar bo‘lib, gradient asosli
o‘rganish tezligini dinamik moslashtiradi.
Har bir optimizator yordamida model 5 epox davomida o‘rgatiladi va test aniqligi
chigariladi.
Natijalarni solishtirish orgali turli algoritmlarning samaradorligini baholash
mumkin.
Muhokama
1. Konvergensiya tezligi:

o Klassik SGD optimizatori o‘rganish jarayonida sekinroq
konvergensiya giladi, aynigsa murakkab model va katta datasetlarda.

o Adam va RMSProp tezroq yo‘qotish minimallashtirishga
erishadi, chunki ular gradient momentlarini hisobga oladi va learning rate
ni dinamik moslashtiradi.

2. Barqarorlik va xatolikni minimallashtirish:
o Adaptiv optimizatorlar gradientning siljishlariga nisbatan

barqaror, shuning natijasida test anigligi yuqori bo‘ladi.

—
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o Adagrad kichik gradientli parametrlar uchun learning rate ni
oshiradi, bu ba’zi hollarda konvergensiya tezligini oshiradi, ammo katta
epoxlarda learning rate juda kichik bo‘lib qolishi mumkin.

3. Hiperparametrlarni sozlash:

o Har bir optimizator uchun learning rate, batch size va
moment parametrlarini to‘g‘ri tanlash muhim.

o Adam odatda default parametrlar bilan yaxshi ishlaydi, lekin
SGD va Adagrad qo‘shimcha tuningni talab giladi.

4. Amaliy qo‘llanilishi:

o Kod natijalari ko‘rsatadiki, adaptiv optimizatorlar aynigsa
konvolyutsion va rekurrent neyron tarmoglarda, katta hajmdagi
datasetlarda samarali.

o Bu optimizatorlar SNT o‘rgatishda xatolikni
minimallashtirish, konvergensiyani tezlashtirish va model barqgarorligini
oshirishga xizmat giladi.

Xulosa

Ushbu maqolada sun’iy neyron tarmoqlarini o‘rgatishda gradient tushunchasi,
klassik Gradient Descent va zamonaviy adaptiv optimizatsiya algoritmlari — Adam,
RMSProp va Adagrad — nazariy va amaliy jihatdan tizimli tarzda tahlil gilindi.
Tadqiqot natijalari shuni ko‘rsatadiki, gradient asosli optimizatsiya metodlari neyron
tarmoglarining samarali ishlashi, xatolikni minimallashtirish va o‘rganish
barqarorligini ta’minlashda markaziy rol o‘ynaydi.

Analitik va amaliy tadgiqotlar shuni isbotladi:

1. Konvergensiya tezligi: Adaptiv optimizatorlar (Adam, RMSProp)
klassik SGD ga nisbatan tezrog konvergensiya qgiladi va murakkab, chuqur
neyron tarmoglarda samarali ishlaydi.

2. O‘rganish barqarorligi: Adaptiv metodlar gradientning siljishlariga
nisbatan barqarorlik yaratadi, bu test anigligini oshiradi va overfitting xavfini

kamaytiradi.
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3. Hiperparametrlarni optimallashtirish: Learning rate, batch size va
optimizer parametrlarini to‘g‘ri tanlash konvergensiya tezligini oshiradi va
o‘rgatish jarayonini samarali qiladi.

4, Amaliy qo‘llanilishi: Adam, RMSProp va Adagrad optimizerlari
CNN, RNN, LSTM va Transformer arxitekturasi asosidagi modellarni samarali
o‘rgatishda muvaffaqiyatli qo‘llaniladi.

Shu bilan birga, magolada keltirilgan Python kodi orgali turli optimizatorlar
samaradorligini solishtirish mumkin bo‘lib, bu yondashuv ilmiy va amaliy jihatdan
SNT o‘rgatish jarayonini takomillashtirishga xizmat qiladi.

Natijada, adaptiv optimizatorlar va zamonaviy gradient asosli metodlar sun’iy
intellekt tizimlarida murakkab modellarning samarali o‘rgatilishini ta’minlash,
xatolikni minimallashtirish va o‘rganish barqarorligini oshirishda muhim ahamiyatga
ega ekanligi isbotlandi. Ushbu yondashuv ilg‘or mashinaviy o‘rganish strategiyalarini
ishlab chigishda ham ilmiy, ham amaliy giymatga ega.
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