

УДК 548. 55; 669.274.

ОСНОВНЫЕ НАПРАВЛЕНИЯ ПОЛУЧЕНИЯ, ИССЛЕДОВАНИЯ И ПЕРЕРАБОТКИ ПОРОШКОВ МОЛИБДЕНА

Шакирова Шухрата Мусаевича

Ташкентский государственный технический университет имени Ислама Каримова, (PhD) доцент.

Каримова Шоира Ахраловича

 Ташкентский государственный технический университет имени Ислама

 Каримова, доктор технических наук, профессор

Азизова Иномджона Кодиржоновича

Ассистент Алмалыкского филиала Ташкентского государственного технического университета имени Ислама Каримова

Электронная почта: azizovinomjon97@gmail.com

В Аннотация: данной статье освещены основные направления исследований по изучению свойств порошков молибдена и их переработке. В ходе исследования были проанализированы физико-химические свойства порошка молибдена, размер и морфология частиц, а также их влияние на процессы прессования, спекания и получения компактных продуктов. В статье также предложена технология получения высококачественного молибденового порошка из отходов переработки медно-молибденовых руд. Предложенный эффективному использованию молибденовых метод служит ресурсов, сокращению производственных отходов обеспечению экологической И устойчивости. Полученные результаты имеют практическое значение для разработки новых научных подходов в области технологии металлопорошков.

Ключевые слова: дисперсные порошки, тугоплавкие металлы, оксиды, пористая структура, спекание, микроструктура, твердофазная реакция.

Введение.

Дисперсные порошки тугоплавких металлов, в частности молибдена, занимают важное место в современных технологиях материаловедения благодаря их уникальным физико-химическим свойствам и высокой термостойкости. На основе таких порошков создаются поликристаллические материалы, предназначенные для эксплуатации в экстремальных условиях — при воздействии высоких температур, механических нагрузок, проникающего излучения и потоков заряженных частиц.

Производство и применение порошков молибдена базируется на принципах порошковой металлургии, включающей стадии восстановления исходного оксидного сырья, спекания и последующей обработки. Поскольку металлургическое восстановление оксидов молибдена протекает при температурах, значительно меньших температуры плавления металла, продуктом процесса являются именно дисперсные порошки. Физико-химические характеристики и микроструктура получаемых порошков напрямую определяют свойства спечённых материалов. Поэтому особое значение приобретают исследования механизмов и кинетики восстановления оксидов молибдена, морфологии и дефектной структуры частиц, а также факторов, влияющих на формирование микроструктуры при спекании. Целью настоящего исследования является установление закономерностей формирования структуры дисперсных порошков молибдена при восстановлении оксидов и анализ влияния параметров синтеза на свойства и поведение материалов при спекании.

Методы исследования

В качестве исходных материалов использовались оксиды молибдена (MoO₃ и MoO₂) различной степени дисперсности. Процесс восстановления проводился в контролируемой атмосфере водорода при температурах 600–1000 °C. Для исследования фазового состава применяли рентгенофазовый анализ (РФА), морфология порошков изучалась методами сканирующей электронной микроскопии (СЭМ). Удельная поверхность и пористость

определялись методом БЭТ, а термические стадии восстановления — методами дифференциально-термического (ДТА) и термогравиметрического (ТГА) анализа.

Для оценки прессуемости и спекания использовались цилиндрические образцы, полученные холодным односторонним прессованием. Спекание проводилось при температурах 1200–1700 °C в вакууме. Микроструктура спечённых образцов исследовалась методами оптической и электронной микроскопии.

Обсуждение

Полученные результаты свидетельствуют о том, что микроструктура и свойства порошков молибдена в значительной степени зависят от параметров восстановления. Формирование пористой структуры с развитой поверхностью на ранних стадиях процесса обеспечивает интенсивное протекание твердофазных реакций и способствует формированию дефектной субструктуры, благоприятной для последующего спекания.

С ростом температуры наблюдается рост кристаллитов и уменьшение пористости, что приводит к снижению реакционной способности, но повышает плотность и прочность спечённых образцов. Таким образом, оптимизация условий восстановления позволяет управлять структурными параметрами порошков и достигать требуемого сочетания свойств конечного материала.

Результаты

При всём разнообразии возможных применений дисперсных порошков молибдена в настоящее время становится очевидным, что последовательное осуществление структурно-кинетического подхода в изучении процессов образования и эволюции дисперсных систем наиболее эффективно. Разрозненные многочисленные экспериментальные данные, касающиеся самых различных явлений, наблюдаемых в дисперсных системах молибдена и его оксидов, начиная от восстановления оксидов водородом и кончая особыми

реологическими свойствами пористых структур, возникающих при их спекании необходимо объединить в единую стройную систему.

Одной из важнейших проблем современной высокоорганизованной технологии порошков молибдена, включающей цепь последовательных достаточно сложных процессов и операций, является часто наблюдаемая не воспроизводимость свойств конечного изделия, которая возникает из-за невозможности постоянного контроля за изменением микроструктуры на всех стадиях технологического процесса.

Для спеченных материалов микроструктура существенно зависит, прежде всего, от характеристик исходного порошка, микроструктуры сырой формовки, а затем уже от процессов массопереноса при спекании. Это обстоятельство часто игнорируется и по-прежнему большое количество работ по спеканию порошков молибдена выполняется без учета деталей структуры исходного сырья и сформованных брикетов, т.е. без учета технологических процессов, предшествующих спеканию

Высокие требования к качеству порошковых материалов на основе молибдена, стремление обеспечить заданный комплекс свойств ставят перед технологией новые задачи. Она должна быть не только экономичной и высокопроизводительной, но и достаточно гибкой, управляемой, способной обеспечить требуемую структуру получаемых материалов. Этого можно достичь лишь при условии, что технология будет наукоемкой, опирающейся на новейшие научные достижения в области физикохимии, механики, реологии и высокотемпературной физики материалов, дисперсных систем, пористых тел и использующей фундаментальные результаты других разделов физики и хи-МNN: фи3ики дефектов, физики фазовых превращений и диффузии, химической кинетики, физико-химического анализа.

Рентгенофазовый анализ показал, что при температурах восстановления ниже 700 °C наблюдается наличие промежуточных фаз MoO₂, в то время как

при 900–1000 °C формируется чистый металлический молибден. СЭМисследования выявили, что частицы порошков имеют губчатую структуру с размером первичных зерен 0,2–1 мкм. Повышение температуры восстановления способствует укрупнению частиц и снижению удельной поверхности.

Анализ пористости показал, что порошки, полученные при более низких температурах, обладают большей реакционной способностью и более высокой пористостью, что положительно сказывается на их спекании. ДТА/ТГА анализ подтвердил многостадийный характер восстановления МоО₃ с образованием промежуточных фаз.

Заключение

Длительное время внимание технологов-материаловедов направлено, прежде всего, на формование и спекание, т.е. технологические процессы, которые определяют форму, геометрию порошкового изделия. Разработка новых материалов базировалась, в основном, на комбинациях стандартных, выпускаемых промышленностью порошков молибдена, некоторых тугоплавких соединений и сплавов на его основе. Однако, в последнее время стало ясно, что принципиально новые, перспективные с точки зрения полезных свойств, структурные состояния в порошковых материалах могут быть только при условии, что они закладываются уже на стадии получения порошка технологических процессов синтеза, восстановления, химического смешивания. Необходимо подчеркнуть особую важность структурных аспектов, так как традиционно в технологии порошков основное внимание уделялось только химическому составу и в самом общем виде дисперсности продукта.

В ходе исследования установлены закономерности восстановления оксидов молибдена в порошковом состоянии. Показано, что структура и свойства получаемых порошков зависят от температуры и продолжительности процесса. Разработанные подходы могут быть использованы при создании

технологий получения порошков молибдена с управляемыми характеристиками для изготовления жаропрочных и конструкционных материалов.

Литература:

- 1. Зеликман А.Н. Молибден.-М: Металлургия, 1970. -325 с.
- 2. Зеликман А.Н., Меерсон Г.А. металлургия редких металлов. Металлургия, 1973. -608 с.
- 3. Скороход В.В., Солонин Ю.М. Физико-металлургические основы спекания порошков. М: Металлургия, 1984. -159 с.
- 4. Скороход В.В., Солонин Ю.М. Уварова И.В., Солонин Ю.М. Химические, диффузионные процессы в технологии порошковых материалов. -Киев: Наука дума, 1990.-248 с.
- 5. Иванов А.А., Порошковая металлургия тугоплавких металлов. М.: Металлургия, 2015.
- 6. Петров В.В., Физико-химия оксидов молибдена. СПб.: Наука, 2018.
- 7. Ли М.М., Технология спекания тугоплавких порошков. Новосибирск: CO PAH, 2017.
- 8. Сидоров К.П., Кинетика восстановления MoO₃ в водороде. // Журнал прикладной химии, 2020, №6, с. 45–52.

