

**CRISPR-CAS9 TECHNOLOGY AND ITS APPLICATIONS IN
BIOMEDICINE****NATIONAL UNIVERSITY OF UZBEKISTAN NAMED AFTER MIRZO
ULUGBEK****Major: BIOTECHNOLOGY****Kucharova Mahbuba Rustamovna****ABSTRACT**

CRISPR-Cas9 has emerged as one of the most transformative tools in molecular biology, enabling precise, efficient, and programmable genome editing across a wide variety of organisms. Originating as an adaptive immune system in prokaryotes, CRISPR-Cas9 has become indispensable in modern biomedical research due to its simplicity, high specificity, and low cost compared with earlier genome-editing platforms such as TALENs and zinc-finger nucleases. This paper provides an in-depth analysis of CRISPR-Cas9 mechanisms, current applications in biomedicine, advancements in therapeutic genome editing, and ethical considerations. Special attention is given to its use in gene therapy, cancer research, infectious disease control, regenerative medicine, functional genomics, and drug discovery. The article concludes by evaluating future directions, current challenges—particularly off-target effects and delivery barriers—and the potential societal impact of CRISPR-based therapies.

Keywords

CRISPR-Cas9; genome editing; gene therapy; biomedicine; molecular biology; cancer treatment; functional genomics; regenerative medicine; ethical issues; genetic engineering.

INTRODUCTION

Over the last decade, CRISPR-Cas9 has dramatically accelerated progress in biomedical science. While traditional genetic engineering methods required complex protein engineering, CRISPR enables targeted modification of DNA sequences using a simple RNA guide and the Cas9 nuclease. The ease of reprogramming this system

has opened unprecedented opportunities for treating genetic diseases, understanding gene function, engineering animal models, and designing novel therapeutics.

The origins of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) were first identified in bacteria and archaea as an adaptive immune mechanism against viral infections. The crucial breakthrough came in 2012 when Doudna, Charpentier, and collaborators demonstrated its potential as a universal genome-editing tool. Since then, CRISPR-Cas9 has rapidly evolved into a platform for DNA editing, RNA targeting, epigenetic engineering, base editing, prime editing, and gene regulation.

This article aims to systematically evaluate the structure and function of CRISPR-Cas9 and highlight its most significant applications in contemporary biomedicine. It also provides a critical analysis of recent advancements and discusses ongoing challenges in therapeutic applications.

DISCUSSION

1. Mechanism of CRISPR-Cas9

CRISPR-Cas9 editing requires two main components:

1. Cas9 endonuclease — the enzyme capable of cutting double-stranded DNA.
2. Guide RNA (gRNA) — a synthetic RNA molecule designed to target a specific DNA sequence adjacent to the PAM (Protospacer Adjacent Motif).

When Cas9 is guided to a selected genomic locus, it introduces a double-strand break (DSB), which is subsequently repaired through either:

Non-Homologous End Joining (NHEJ) — often producing insertions or deletions (indels),

Homology-Directed Repair (HDR) — enabling precise sequence replacement when a repair template is provided.

Expanded CRISPR variants include:

dCas9 (dead Cas9) for transcription regulation,

Cas9-nickase for single-strand cuts,

Base editors for nucleotide-level conversion,

Prime editors, a newer system capable of rewriting genome sequences without DSBs.

2. CRISPR-Cas9 in Functional Genomics

Functional genomics uses CRISPR to analyze gene roles with unprecedented efficiency.

2.1 Gene Knockouts and Knock-ins

CRISPR facilitates targeted gene disruption and insertion, replacing earlier techniques requiring labor-intensive embryonic stem-cell engineering.

2.2 High-throughput Genome Screening

CRISPR libraries allow systematic testing of thousands of genes, enabling:

identification of cancer drivers,

analysis of drug-resistance pathways,

discovery of genes essential for cell survival.

3. Applications of CRISPR-Cas9 in Biomedicine

3.1 Gene Therapy

CRISPR-based gene therapy aims to correct disease-causing mutations.

Promising targets include:

Sickle cell anemia, corrected by editing hematopoietic stem cells (HSCs),

β-thalassemia,

Duchenne muscular dystrophy,

Cystic fibrosis,

Leber congenital amaurosis (LCA10) — the first in vivo CRISPR therapy tested in humans (EDIT-101).

3.2 Cancer Research and Treatment

CRISPR accelerates development of novel anti-cancer therapies through:

engineering CAR-T cells for enhanced tumor targeting,

knocking out immune-suppressive genes in T-cells,

generating animal cancer models,

identifying oncogenic mutations.

Clinical trials have already tested CRISPR-engineered immune cells in leukemia, lung cancer, and multiple myeloma.

3.3 Infectious Disease Control

CRISPR has potential applications in combating infectious diseases:

HIV: editing CCR5 or targeting integrated viral DNA,

Hepatitis B: eliminating viral reservoirs,

SARS-CoV-2: CRISPR-based diagnostics (SHERLOCK, DETECTR),
development of CRISPR antivirals targeting viral RNA.

3.4 Regenerative Medicine

CRISPR enables:

engineering induced pluripotent stem cells (iPSCs),

correcting genetic defects in stem cells before transplantation,

enhancing organ regeneration and tissue engineering.

3.5 Drug Discovery

CRISPR accelerates discovery of drug targets by:

knocking out genes to test drug sensitivity,

validating molecular pathways,

engineering disease cell lines for model systems.

4. Advantages of CRISPR-Cas9

High precision compared to traditional mutagenesis.

Low cost, increasing accessibility for laboratories globally.

Multiplexing capability, enabling simultaneous editing of several genes.

Versatility, with applications across DNA editing, RNA targeting, and epigenetic modulation.

5. Challenges and Limitations

Despite its enormous potential, several challenges remain:

5.1 Off-target Effects

Unintended cuts at genomic sites similar to the target sequence can cause genomic instability.

5.2 Delivery Mechanisms

Delivering CRISPR components safely and efficiently to human tissues remains difficult. Delivery methods include:

viral vectors (AAV, lentivirus),
lipid nanoparticles,
ribonucleoprotein (RNP) complexes.

5.3 Ethical Concerns

Human germline editing raises profound ethical questions:

risk of heritable unintended mutations,
potential for non-medical enhancement,
social and regulatory implications.

RESULTS

Recent research has demonstrated the effectiveness of CRISPR-Cas9 in real biomedical applications:

1. Successful correction of sickle cell anemia mutations in patient-derived stem cells.
2. Improved CAR-T cell therapies reducing relapse rates in leukemia.
3. Demonstration of in vivo editing of retinal cells in LCA10 patients.
4. CRISPR-based viral diagnostics achieving rapid detection of COVID-19 with high sensitivity.
5. Development of prime editing, improving accuracy and reducing undesired DSBs.

These results collectively highlight CRISPR's transformative impact on modern medicine.

CONCLUSION

CRISPR-Cas9 technology has become an essential tool in biomedicine, revolutionizing the way scientists modify and understand genetic material. From gene therapy to cancer treatment, infectious disease control, and regenerative medicine, CRISPR offers solutions to problems once considered insurmountable. Although technical and ethical challenges remain, rapid improvements in precision, delivery technologies, and regulatory frameworks suggest that CRISPR-based therapies will soon become standard in clinical practice.

As research evolves, CRISPR may enable complete cures for hereditary diseases, personalized cancer immunotherapies, and advanced biological engineering. The future of genome editing promises greater accuracy, expanded therapeutic applications, and increasingly responsible ethical oversight.

REFERENCES

(All references formatted in academic style; sources selected from peer-reviewed scientific literature.)

1. Doudna, J. A., & Charpentier, E. (2014). Genome editing: The new frontier of genetic engineering. *Science*, 346(6213), 1258096.
2. Jinek, M., et al. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. *Science*, 337(6096), 816–821.
3. Komor, A. C., et al. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. *Nature*, 533, 420–424.
4. Anzalone, A. V., et al. (2019). Search-and-replace genome editing without double-strand breaks. *Nature*, 576, 149–157.
5. Ledford, H. (2020). CRISPR treatment inserted directly into the body for the first time. *Nature*.
6. Barrangou, R., & Doudna, J. A. (2016). Applications of CRISPR technologies in research and beyond. *Nature Biotechnology*, 34(9), 933–941.

7. Cox, D. B. T., Platt, R. J., & Zhang, F. (2015). Therapeutic genome editing: Prospects and challenges. *Nature Medicine*, 21, 121–131.
8. Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. *Cell*, 157(6), 1262–1278.
9. Li, H., Yang, Y., & Mou, H. (2023). Advances in CRISPR-based gene therapy. *Trends in Biotechnology*.
10. Strzyz, P. (2021). CRISPR diagnostics: A new era of rapid testing. *Nature Reviews Genetics*.