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Аннотация. В этой статье даётся метод построения общего решения 

уравнений вида 

𝑥(𝑡 + 2𝑝) + 𝑎(𝑡)𝑥(𝑡 + 𝑝) + 𝑏(𝑡)𝑥(𝑡) = 𝑔(𝑡) ,               

где 𝑝 ≠ 0 – некоторое число, 𝑎(𝑡) и 𝑏(𝑡) – периодические, периода 𝑝 , 

функции.                    

          Ключевые слова: линейные,, уравнения, метод, общее, однородное,  

неоднородное, линейные уравнения, метод , общее решения, однородное 

уравнение, неоднородное уравнение. 

 

Рассмотрим однородное уравнение  

 

                     𝑥(𝑡 + 2𝑝) + 𝑎(𝑡)𝑥(𝑡 + 𝑝) + 𝑏(𝑡)𝑥(𝑡) = 0,                       

 

где 𝑝 ≠ 0 – некоторое число, 𝑎(𝑡) и 𝑏(𝑡) – периодические, периода 𝑝 , функции. 

Будем искать частные решения в виде  

 

𝑥(𝑡) = [𝜆(𝑡)]
𝑡

𝑝 ,  

 

где  𝜆(𝑡) – подлежащая определению периодическая, периода 𝑝, функция. 

 

 Из вида частного решения имеем  

 

  

𝑥(𝑡 + 𝑝) = [𝜆(𝑡 + 𝑝)]
𝑡+𝑝

𝑝 = [𝜆(𝑡 + 𝑝)]
𝑡

𝑝. 𝜆(𝑡) , 
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𝑥(𝑡 + 2𝑝) = [𝜆(𝑡 + 2𝑝)]
𝑡+2𝑝

𝑝 = [𝜆(𝑡 + 2𝑝)]
𝑡

𝑝. 𝜆2(𝑡) . 

 

Подставляя найденные значения в (1.35), получим 

 

                 [𝜆(𝑡)]
𝑡

𝑝 ∙ (𝜆2(𝑡) +  𝑎(𝑡)𝜆(𝑡) +  𝑏(𝑡))𝑏(𝑡) = 0 . 

  

Отсюда имеем 

 

               𝜆2(𝑡) +  𝑎(𝑡)𝜆(𝑡) +  𝑏(𝑡) = 0 .                                                                   

(т.е. периодическая функция), то решения 

 

𝑥1(𝑡) = [𝜆1(𝑡)]
𝑡

𝑝 

 

и 

 

𝑥2(𝑡) =  [𝜆2(𝑡)]
𝑡

𝑝  

 

Линейно независимые функции по Ω  , следовательно, общее решение данного 

уравнения имеет вид 

 

 Общее решение имеет вид 

 

где  𝜔1(𝑡), 𝜔2(t)  ∈  Ω . 

 

1) Пусть на множестве 𝐸0  𝜆1,2(𝑡) – комплексные функции , т.е.  

 

𝜆1,2(𝑡) = 𝑟(𝑡)𝑒
±𝜑(𝑡) , 

 

где 𝑟(𝑡), 𝜑(𝑡) – действительные функции. 

Тогда функция 

 

[𝑟(𝑡)𝑒±𝜑(𝑡) ]
𝑡

𝑝 = (𝑟(𝑡))
𝑡

𝑝 ((cos
 𝜑(𝑡)

𝑝
) 𝑡 + sin

𝜑(𝑡)

𝑝
𝑡)                         (1.38) 

   

является комплексным решением уравнения (1.35) . 
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Из линейности уравнения следует, что действительная и мнимая части функции 

(1.38) также являются решениями данного уравнения, т.е 

 

               .𝑥1(𝑡) = (𝑟(𝑡))
𝑡

𝑝 cos
 𝑡𝜑(𝑡)

𝑝
 ,    𝑥2(𝑡) = (𝑟(𝑡))

𝑡

𝑝 sin
𝑡𝜑(𝑡)

𝑝
 . 

 

 

Очевидно, эти решения также линейно независимы по Ω . Следовательно, общее 

решение имеет вид 

 

𝑥(𝑡) = (𝑟(𝑡))
𝑡

𝑝 (𝜔1(𝑡) cos
 𝑡𝜑(𝑡)

𝑝
+𝜔2(𝑡) sin

𝑡𝜑(𝑡)

𝑝
) ,                    (1.39) 

 

где  𝜔1(𝑡), 𝜔2(t)  ∈  Ω . 

 

2) Пусть на множестве 𝐸0  𝜆1(𝑡) ≡ 𝜆2(𝑡) ≡ 𝜆(𝑡). 

В этом случае нам известно одно частное решение 

 

                     𝑥1(𝑡) = [𝜆(𝑡)]
𝑡

𝑝 . 

 

Вычисляя по формуле (1.24) второе частное решение 𝑥2(𝑡), линейно независимое 

по Ω с .𝑥1(𝑡) , найдем, что  𝑥2(𝑡) = 𝑡.𝑥1(𝑡) . Поэтому общее решение имеет вид 

 

  

                    𝑥(𝑡) = (𝑟(𝑡))
𝑡

𝑝(𝜔1(𝑡) + 𝑡 ∙ 𝜔2(𝑡)) ,                              (1.40) 

 

где  𝜔1(𝑡), 𝜔2(t)  ∈  Ω . 

 

3) Пусть ни одно из условий 1), 2) или 3) не имеет места на всем множестве 𝐸0 

. В этом случае 𝐸0 разбивается на три множества так, чтобы на каждом из 

этих подмножеств имело место одно из условий 1), 2) или 3) . 

Для каждого такого подмножества строится общее решение, соответственно 

случаям 1). 2) или 3) в отдельности и продолжается на (−∞,+∞) 

периодическом образом. 

 

Примеры: 

 

1) 𝑥(𝑡 + 2𝑝) + 𝑎𝑥(𝑡 + 𝑝) + 𝑏𝑥(𝑡) = 0 ,                             (1.41) 
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где p≠ 0 , 𝑎 , 𝑏 −  постоянные, 𝑎 ∙ 𝑏 ≠ 0 . 

Соответствующее характеристическое уравнения имеет вид 

 

               𝜆2 + 𝑎𝜆 + 𝑏 = 0 .                                                          (1.42) 

 

Пусть 𝑎2 − 4𝑏 > 0  и  𝜆1(𝑡) ≡ 𝜆2(𝑡) – корни этого уравнения. Тогда в силу (1.37), 

общее решение уравнения (1.41) имеет вид 

 

           𝑥(𝑡) =  𝜆1
𝑡

𝑝 ∙ 𝜔1(𝑡) + 𝜆2
𝑡

𝑝 ∙ 𝜔2(𝑡)                                           (1.43) 

где  𝜔1(𝑡), 𝜔2(t) – любые 𝑝 – периодические функции.  

 Пусть 𝑎2 − 4𝑏 < 0  𝜆1,2 =  𝑟𝑒
±𝜑(𝑡) – корни характеристического  

уравнения (1.42). Тогда в силу (1.39) общее решение имеет вид 

 

 

𝑥(𝑡) = 𝑟
𝑡

𝑝 (𝜔1(𝑡) cos
 𝜑

𝑝
𝑡 + 𝜔2(𝑡) sin

𝜑

𝑝
𝑡) . 

 

Если 𝑎2 = 4𝑏   𝜆0 – кратный корень уравнения (1.42), то общее решение имеет 

вид 

 

  

𝑥(𝑡) = 𝜆0
𝑡
𝑝(𝜔1(𝑡) + 𝑡𝜔2(𝑡)) . 

 

 

2)               𝑥(2𝑡 + 2𝜋) +
2

cos2𝑡
𝑥(𝑡 + 𝜋) + 𝑥(𝑡) = 0, 𝑡 ≠

2𝑛+1

4
𝜋    . 

 

Характеристическое уравнение имеет вид 

 

𝜆2(𝑡) −
2

cos 2𝑡
𝜆(𝑡) + 1 = 0 

                                                   

 

Корни этого уравнения  

 

 

𝜆1,2 =
1 ± sin 2𝑡

cos 2𝑡
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Является действительными функциями. 

Поэтому в силу (1.37) общее решение данного уравнения имеет вид 

 

𝑥(𝑡) = (
1+sin 2𝑡

cos2𝑡
)

𝑡

𝜋
𝜔1(𝑡) + (

1−sin 2𝑡

cos2𝑡
)

𝑡

𝜋
𝜔2(𝑡) .  

 

3) 𝑥(𝑡 + 2) − 2√1 + sin 2𝜋𝑡 ∙ 𝑥(𝑡 + 1) + 𝑥(𝑡) = 0 . 

  

 

 

𝜆2(𝑡) − 2√1 + sin 2𝜋𝑡 𝜆(𝑡) + 1 = 0 

 

Корни этого уравнения являются функции 

 

                      𝜆1,2(𝑡) = √1 + sin 2𝜋𝑡 ± √sin2𝜋𝑡   .                                           (1.44) 

Разобьем множество 𝐸0 = [0: 1) на подмножества  

 

                 𝐸0
′ = {0}, 𝐸0

′′ = (0:
1

2
 ), 𝐸0

′′′ = [
1

2
: 1) 

 

Продолжая их на всю ось периодическим образом, рассмотрим уравнение 

на каждом из подмножеств вида 

 

𝐸𝑛
′ = {𝑛}, 𝐸𝑛

′′ = (𝑛: 𝑛 +
1

2
) , 𝐸𝑛

′′′ = [𝑛 +
1

2
: 𝑛 + 1)  

 

𝑛 = 0,±1,±2,…  . На множестве  𝐸𝑛
′   корни (1.44) кратные 𝜆1,2(𝑡) = 1 .  

Поэтому, в силу  (1.40), общее решение имеет вид 

 

𝑥(𝑛) = 𝐶1 + 𝑛𝐶2 , 

 

где 𝐶1, 𝐶2 – постоянные, принадлежащие Ω . 

 

На множестве 𝐸𝑛
′′ корни  (1.44)  действительные. 

 По этому в силу   имеет вид(1.38) общее решение имеет вид 

 

𝑥(𝑡) = (√1 + sin 2𝜋𝑡 + √sin2𝜋𝑡 )
𝑡
𝜔1(𝑡) + (√1 + sin 2𝜋𝑡 − √sin 2𝜋𝑡 )

𝑡
𝜔2(𝑡). 
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и на множестве 𝐸𝑛
′′′ корни  (1.44)  комплексные. Поэтому в силу  (1.39)  общее 

решение имеет вид 

 

𝑥(𝑡) = 𝜔1(𝑡) ∙ cos(𝑡 sin
−1 √−sin 2𝜋𝑡) + 𝜔2(𝑡) ∙ sin(𝑡 sin

−1 √−sin 2𝜋𝑡 ) , 

 

где  𝜔1(𝑡), 𝜔2(t)  ∈  Ω , 𝑡 ∈ 𝐸𝑛
′′′ . 

Теперь рассмотрим неоднородное уравнение 

 

 

 

𝑥(𝑡 + 2𝑝) + 𝑎(𝑡)𝑥(𝑡 + 𝑝) + 𝑏(𝑡)𝑥(𝑡) = 𝑔(𝑡)               (1.45) 

 

 

где 𝑝 ≠ 0 – некоторое число, 𝑎(𝑡) , 𝑏(𝑡), 𝑔(𝑡) – периодические, периода 𝑝 , 

функции. 

 Пусть 

  

1 + 𝑎(𝑡) + 𝑏(𝑡) = {
0 при  𝑡 ∈ 𝐸0

′ ⊂ 𝐸0 ,                     

         ≠ 0 при 𝑡 ∈ 𝐸0\𝐸0
′  .                             

(1.46) 

 

Частные решение 𝜗(𝑡)  данного уравнения будем искать в виде 

 

1) 𝜗(𝑡) = 𝛼(𝑡) ,    𝑡 ∈ 𝐸0\𝐸0
′  , 

2) 𝜗(𝑡) = 𝛼(𝑡) ,    𝑡 ∈ 𝐸0
′  , 

 

где 𝛼(𝑡) – подлежащая к определению, 𝑝 – периодическая функция. 

  Пусть 𝑡 ∈ 𝐸0\𝐸0
′  . Подставляя значение 𝜗(𝑡) в уравнение, получим 

 

(1 + 𝑎(𝑡) + 𝑏(𝑡))𝛼(𝑡) = 𝑔(𝑡) . 

  

Отсюда 

 

𝛼(𝑡) =
𝑔(𝑡)

1+𝑎(𝑡)+𝑏(𝑡)
  ,   𝑡 ∈ 𝐸0\𝐸0

′   . 

 

Пусть 𝑡 ∈ 𝐸0
′  . Подставляя в уравнение значение  𝜗(𝑡) ,  получим 

𝑡 ∙ (1 + 𝑎(𝑡) + 𝑏(𝑡))𝛼(𝑡) + (2𝑝 + 𝑝 ∙ 𝑎(𝑡))𝛼(𝑡) = 𝑔(𝑡)  
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или в силу (1.46) , имеем 

 

𝑝 ∙ (2 + 𝑎(𝑡))𝛼(𝑡) = 𝑔(𝑡) . 

 

Отсюда 

𝛼(𝑡) =
𝑔(𝑡)

(2+𝑎(𝑡))∙𝑝
  ,  𝑎(𝑡) ≠ −2 .  

 

Если же 𝑎(𝑡) = −2 , то уравнение (1.45) примет вид 

𝑥(𝑡 + 2𝑝) − 2𝑥(𝑡 + 𝑝) + 𝑥(𝑡) = 𝑔(𝑡) . 

 

Тогда частное решение будем искать в виде   𝜗(𝑡) = 𝑡2 ∙ 𝛼(𝑡)  и получим , 

что  

 

𝜗(𝑡) =
𝑡2

2𝑝2
∙ 𝑔(𝑡)  . 

Таким образом частное решение уравнения (1.45) имеет вид 

 

 

𝜗(t)=

{
 
 

 
 

𝑔(𝑡)

1+𝑎(𝑡)+𝑏(𝑡)
  ,   1 + 𝑎(𝑡) + 𝑏(𝑡) ≠ 0 ,

𝑡∙𝑔(𝑡)

1+𝑎(𝑡)+𝑏(𝑡)
  ,   1 + 𝑎(𝑡) + 𝑏(𝑡) ≠ 0 ,   𝑎(𝑡) ≠ −2 ,

𝑡2

2𝑝2
∙  𝑔(𝑡)  ,   𝑎(𝑡) = −2 , 𝑏(𝑡) = 1 .
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