

DYNAMICS OF CHANGE OF THE SHOULDER BONE COMPACT IN THE POSTNATAL ONTOGENESIS OF RABBITS OF THE WHITE VELIKAN, GRAY VELIKAN AND FLANDERS BREEDS

X.B.Yunusov b.f.d., professor

N.B.Dilmurodov v.f.d. professor

Z.R.Mirzoyev assistant

*Samarkand State Veterinary Medicine
University of livestock and biotechnology*

Summary. *The features of changes in the morphometric indicators of the dorsal and palmar compact substance of the humeral bone in rabbits of the Grey Giant, White Giant, and Flanders breeds in postnatal ontogenesis have been studied. It has been established that the indicators of the thickness of the dorsal and palmar compact substance of the humeral bone have a specific growth dynamics at various physiological stages of postnatal development in rabbits. It was especially noted that the absolute values of the thickness of the dorsal and palmar compact substance of the humeral bone in rabbits of the 1st and 3rd groups were higher from the first day to 21 days of age compared to the 2nd group.*

Key words: *rabbit, gray giant, white giant and flander, shoulder, postpartum ontogenesis, dorsal compact substance, volyar compact substance, growth coefficient, linear size.*

Rabbit farming is currently the most dynamically developing branch of animal husbandry, supplying the population with the largest percentage of products that are a source of animal protein of full value. Thanks to this, modern gray velikan rabbits ' rapid growth and high productivity from their biological characteristics are characterized by low resource consumption compared to other types of meat production and low cost of rabbit meat. The study of their biological characteristics, the laws of development in postnatal ontogenesis and their rational use are of significant scientific and practical importance in order to obtain quality and more products from agriculture and domestic animals. Including, taking into account the Morpho-physiological changes that occur in the rabbit's body at various physiological stages of postnatal development in the production of high-quality products from the rabbit network makes it possible to correctly establish this area on a scientific basis. In addition, rabbits are also important in experimental research and development experiments as laboratory animals. Rabbits occupy one of the main places in the world economy and consumption. For example, despite the low consumption of rabbit meat in China, this country is the world leader in its cultivation. In Chinese rabbits, special

attention is paid to the care of fur and tivite breeds. The runner-up is Italy. The rate of consumption of rabbit meat per capita (5.5-6 kg per year).Rabbits occupy one of the main places in the world economy and consumption. For example, despite the low consumption of rabbit meat in China, this country is the world leader in its cultivation. In Chinese rabbits, special attention is paid to the care of fur and tivite breeds. The runner-up is Italy. The rate of consumption of rabbit meat per capita (5.5-6 kg per year.) also belongs to the Italians. This figure is 2.5-3 kilograms in France, Germany and Hungary, and in these countries 65 percent of products are produced in a cluster method [4, 9]. " According to the modern trend of healthy eating and the recommendation of the World Health Organization on the norm of dietary meat consumption, 5 percent of meat products that a person consumes throughout the year, that is, 4.5 kilograms, should be rabbit meat, " the statement said. From this we can say that at present, the market of our country theoretically has a demand for 150 thousand tons of rabbit meat per year [3, 7, 8]. According to data, in terms of satiety, 1 kilogram of rabbit meat is equal to 1.45 kilograms of the best beef. Also, its meat differs from that of sheep, beef and other animals in its low cholesterol content. 90% of the protein it contains is completely absorbed by the human body. It is also rich in mineral salts, calcium and phosphorus, with good taste. According to data, in terms of satiety, 1 kilogram of rabbit meat is equal to 1.45 kilograms of the best beef. Also, its meat differs from that of sheep, beef and other animals in its low cholesterol content. 90% of the protein it contains is completely absorbed by the human body. It is also rich in mineral salts, calcium and phosphorus, with good taste. Due to such positive properties, rabbit meat is recommended for people with diseases of the liver, stomach, cardiovascular system, diabetes mellitus, allergies [2, 5, 6]. The fact that rabbits at the age of sexual maturity maintain the physiological homeostasis of their organism occurs with a change in the activity of enzymes of the antioxidant system of the blood has proven itself in Scientific Research [1]. The fact that rabbits at the age of sexual maturity maintain the physiological homeostasis of their organism occurs with a change in the activity of enzymes of the antioxidant system of the blood has proven itself in Scientific Research [1]. The peculiarities of micromorphometric indicators of the shoulder bone of rabbits have been studied by researchers, according to the authors, according to the written data of domestic rabbits on the foot skeleton, a visual discrepancy in terms of the anatomical structure of the shoulder bone in the right and left legs has not been determined. Several factors have been found to influence the structure of the shoulder bone in rabbits through research. One of the factors affecting bone structure is body weight, curving and writing movements of the shoulder joint [9].

Purpose of the study - Determination of micromorphometric changes in the shoulder bone during postnatal ontogenesis in rabbits of the Grey Giant, White Giant, and Flanders breeds.

Research tasks:

- Study of the dynamics of growth of the dorsal and volyar compact bone thickness of the shoulder bone in postnatal ontogenesis of rabbits of the Grey Giant, White Giant and Flanders breeds.
- Analysis of micromorphometric dynamics, calculating the growth factor of the dorsal and palmar compact substance thickness of the shoulder bone of rabbits.
- Statistical analysis and scientific justification of the obtained micromorphometric parameters.

Materials and methods. Scientific verification work was carried out on the shoulder bone of gray velikan, white velikan, rabbit children of the Flanders Breed, who were parved in the vevary, which was established in the framework of the “Mega project” at SamDVMCHBU. Each was separated into 3 groups with 10 head of rabbit children. All groups of rabbit children were fed on the same diet.ification work was carried out on the shoulder bone of gray velikan, whithe experiment.

To determine the linear dimensions of bones, general morphological methods were used, which were used by N.P. Chirvinsky and improved and introduced by scientists of the Samarkand State University of Veterinary Medicine, Animal Husbandry and Biotechnology (D.Kh. Narziyev, M.Kh. Allamurodov, A.S. Daminov, R.M. Tashtemirov, N.B. Dilmurodov).

All numerical data obtained as a result of scientific investigations were subjected to mathematical processing according to the method of Y.K. Merkureva.

Mathematical and statistical analysis was performed in a Microsoft Excel spreadsheet using the Student and Fisher criteria.

Results and their analysis. The absolute value of the dorsal compact substance thickness of the shoulder bone of the gray giant rabbits in the first group was 0.042 ± 0.001 cm on the 1st day of postnatal ontogenesis, with a rapid increase until the 21st day (0.074 ± 0.002 cm, $p < 0.03$; $K=1.76$) and a gradual continuation of this process until the next 120 days of study, i.e. at 51 days of age - 0.11 ± 0.004 cm ($p < 0.04$; $K=1.48$), at 81 days of age - 0.13 ± 0.03 cm ($p < 0.03$; $K=1.22$), and at 120 days of age - 0.15 ± 0.002 cm ($p < 0.02$; $K=1.09$). It was found that the growth coefficient of this indicator of the humerus is 3.5 times in rabbits from 1 day to 120 days of age.

It was noted that the absolute index of the palmar compact substance thickness of the humerus increased from 0.032 ± 0.0004 cm to 0.06 ± 0.0013 cm ($K=1.92$) from the first day of postnatal development to the 21st day of the first group of rabbits, it was somewhat more intense from the 21st to the 51st day (0.099 ± 0.003 cm, $p < 0.03$; $K=1.58$) and continued periodically until the next 120 days, that is, at 81 days it reached 0.118 ± 0.004 cm ($p < 0.04$; $K=1.19$), and at 120 days it reached 0.129 ± 0.002 cm ($K=1.1$). It was found that the growth coefficient of the palmar compact substance of the bone was 4.03 times during the studied stages of postnatal ontogenesis.

The second group - the thickness of the dorsal compact substance of the shoulder bone of the white giant rabbit was 0.041 ± 0.0007 cm on the 1st day of postnatal ontogenesis, and it was observed that it increased rapidly until the 21st day (0.072 ± 0.001 cm, $p < 0.02$; $K = 1.75$) and continued this process gradually until the next 120 days of study, that is, at 51 days - 0.108 ± 0.003 cm ($p < 0.04$; $K = 1.5$), at 81 days - 0.13 ± 0.007 cm ($p < 0.03$; $K = 1.21$), and at 120 days - 0.139 ± 0.002 cm ($p < 0.02$; $K = 1.06$). It was found that the growth coefficient of this indicator of the humerus is 3.39 times in rabbits from 1 day to 120 days of age.

The absolute index of the palmar compact substance thickness of the humerus was recorded to increase from 0.032 ± 0.004 cm to 0.058 ± 0.0013 cm ($p < 0.03$; $K = 1.81$) from the first 1 to 21 days of postnatal development of the second group of rabbits, this process continued from 21 to 51 days (0.092 ± 0.001 cm, $p < 0.02$; $K = 1.59$) and continued periodically until the next 120 days, i.e. at 81 days - 0.106 ± 0.004 cm ($p < 0.03$; $K = 1.14$), at 120 days - 0.129 ± 0.002 g; $K = 1.07$). It was found that the absolute growth coefficient of the palmar compact substance thickness of the bone was 3.53 times during the studied stages of postnatal ontogenesis of rabbits.

The absolute value of the thickness of the dorsal compact substance of the humerus in the third group - Flemish breed rabbits - was 0.043 ± 0.0006 cm on the 1st day of postnatal ontogenesis, increasing until the 21st day (0.076 ± 0.002 cm, $p < 0.03$; $K = 1.79$) and continuing this process in a stepwise manner until the next 120 days of study, i.e. at 51 days - 0.116 ± 0.003 cm ($p < 0.04$; $K = 1.53$), at 81 days - 0.144 ± 0.003 cm ($p < 0.02$; $K = 1.24$), and at 120 days - 0.16 ± 0.002 cm ($K = 1.1$). It was found that the growth coefficient of this indicator of the humerus is 3.76 times in rabbits from 1 day to 120 days of age.

The absolute index of the palmar compact substance thickness of the humerus bone was recorded to increase rapidly from 0.032 ± 0.0001 cm to 0.062 ± 0.002 cm ($p < 0.04$; $K = 1.96$) from the first 1 to 21 days of postnatal development of rabbits of the third group, continuing periodically from 21 to 51 days (0.1 ± 0.003 cm; $K = 1.6$) and up to the next 120 days, i.e. at 81 days - to 0.121 ± 0.002 cm ($K = 1.22$), at 120 days - to 0.133 ± 0.002 cm ($p < 0.02$; $K = 1.1$). It was found that the growth coefficient of the palmar compact substance thickness of the bone was 4.2 times during the studied stages of postnatal ontogenesis of rabbits.

Thus, the absolute value of the linear thickness of the dorsal and palmar compact substance of the shoulder bone of rabbits exhibits a specific dynamics of change at different physiological stages of postnatal ontogenesis, and these indicators have certain differences across rabbit breeds.

Conclusion:

- it was noted that the linear dimensions of the shoulder bone increased somewhat rapidly during the period from the first day of postnatal ontogenesis to the

21st day, and this process continued without significant deviations in the subsequent studied stages;

- it was found that the thickness of the dorsal and palmar compact substance of the humerus was higher in rabbits of groups 1 and 3 during the stages of postnatal ontogenesis, especially up to 21 days of age.

References

1. Калугин Ю.А. Биологические особенности кроликов / Ю.А. Калугин. - М.: ФГБОУ ВПО МГАВМБ, - 2012. - 36 с.
2. Макарцев, Н. Г. Кормление сельскохозяйственных животных / Н. Г. Макарцев. – Калуга: Ноосфера, 2012. – 642 с.
3. Александрова, В.С. Нормы и рационы кормления кроликов и нутрий / В.С. Александрова // Сборник научных трудов РАСХН, ГНУ НИИ пушного звероводства кролиководства им. В.А. Афанасьева, Московская область. – 2001. –С. 4-29.
4. Якимов О.А. Морфологическое обоснование применения агроминералов млекопитающим животным для коррекции метаболизма и повышения продуктивности: Автореф. дис. ... д-ра биол. наук : 06.01.02 / О.А. Якимов; Екатеринбург, 2006. - 41 с.
5. Лактионов К.С. Физиология питания кроликов и пути повышения степени использования кормов / К.С. Лактионов. - Орел: Орл. ГАУ, -2007. - 164с.
6. Дзержинский Ф.Я. Методические указания по проведению практических занятий по курсу зоологии позвоночных для студентов физико-биологического отделения. Моск. гос. ун-т. М. : МГУ, 2000. –С. 26-28.
7. Понкратова С.В. Видовые особенности морфологии скелета и мышц с их сосудами и нервами области шей у пушных зверей. Автореф. дисс...канд.биол.наук. Омск, 1999. -24 с..
8. Соколов В.Г. Морфология костного моза у поросят // Известия сельскохозяйственной науки Тавриды, 2015. № 2 (165). –С. 130-136.
9. Криштофорова Б.В. Структурно-функциональные особенности ремоделяции костных органов у новорожденных млекопитающих // Известия сельскохозяйственной науки Тавриды, 2016. № 7 (170). –С. 96-101.
1. Abdigulovich, M. E., & Bobokulovich, D. N. (2021). Changes in the postnatal ontogenesis of histological indicators of the four-headed muscle number of Hisori sheep.
2. Abdullaeva, D., Dilmuradov, N., Khudaynazarova, N., Doniyorov, S., & Mukhtarov, E. (2025). Dynamics of changes in the morphometric dimensions of the free wing bones in Japanese Quails. In *BIO Web of Conferences* (Vol. 181, p. 01006). EDP Sciences.

3. Abdullayeva, D., Tashmuradov, J., & Dilmurodov, N. (2025, November). Features of change in postnatal ontogenesis of finger bone morphometric indicators of japanese quails. In *Scottish International Conference on Multidisciplinary Research and Innovation–SICMRI 2025* (Vol. 2, No. 1, pp. 35-38).
4. Akhmedov, S. M., Daminov, A. S., & Kuliev, B. A. (2023). Episotological monitoring of sheep paramphistomatosis in different biogeotcenoses of Samarkand region. *Экономика и социум*, (5-1 (108)), 14-17.
5. Akhmedov, S., Kuliyev, B., Normuradova, Z., Babanazarov, E., & Raxmanova, G. (2025). Epizootiology of sheep paramphistomatosis in the conditions of the Samarkand region of the republic of Uzbekistan. In *BIO Web of Conferences* (Vol. 181, p. 01035). EDP Sciences.
6. Akhmedov, S., Kuliyev, B., Normuradova, Z., Babanazarov, E., & Raxmanova, G. (2025). Epizootiology of sheep paramphistomatosis in the conditions of the Samarkand region of the republic of Uzbekistan. In *BIO Web of Conferences* (Vol. 181, p. 01035). EDP Sciences.
7. Axmedov, S. M., Daminov, A. S., & Kuliev, B. A. Paramfistomatozda qo 'ylar ichki organlaridagi patanatomik va patogistologik o 'zgarishlar. *International Journal of Agrobiotechnology and Veterinary Medicine*.
8. Bakhodirovich, Y. J., & Bobokulovich, D. N. (2022). Treatment and prevention of transmissive venereal sarcoma in dogs. *Eurasian Medical Research Periodical*, 7, 81-85.
9. Choriyev, O., Dilmurodov, N., Babanazarov, E., Karimov, M., Mukhtarov, B., Rahmanov, O. T., & Yakhshiyeva, S. (2024). Morphological characteristics of skin thickness in postnatal ontogenesis of karabayir horses. In *BIO Web of Conferences* (Vol. 126, p. 01008). EDP Sciences.
10. Choriyev, O., Dilmurodov, N., Babanazarov, E., Karimov, M., Mukhtarov, B., Rahmanov, O. T., & Yakhshiyeva, S. (2024). Morphological characteristics of skin thickness in postnatal ontogenesis of karabayir horses. In *BIO Web of Conferences* (Vol. 126, p. 01008). EDP Sciences.
11. Dilmurodov, N. (2010). The Developmental Peculiarities of Tubular Bones of Autopodies of Sheep at Postnatal Ontogenesis in Dependence on Habitat Conditions. *新疆农业大学学报*, 6.
12. Dilmurodov, N. B., Mirzoyev, Z. R., & Normuradova, Z. F. FLANDER ZOTLI QUYONLAR SON SUYAGINING TURLI FIZIOLOGIK BOSQICHLARIDAGI MORFOGENEZI. *UXeXc [Sc [re [TT [üe [US jacUSj [^[] Tq^XeX*, 64.
13. Dilmurodov, N., & Najmuddinov, K. (2024). Postnatal Morphogenesis of Voluntary Motor Organs in Chickens. *Miasto Przyszlosci*, 54, 115-120.

14. Dilmurodov, N., Doniyorov, S., Mukhtarov, E., Khudaynazarova, N., Mirzoyev, Z., Normuradova, Z., & Eshmatov, G. (2024). Postnatal morphogenesis of some histological parameters of the femur of broiler chickens taking probiotic. In *BIO Web of Conferences* (Vol. 126, p. 01010). EDP Sciences.
15. Djumanov, S. M., Karimov, M. G., & Raxmonov, L. (2023). KATARAL-YIRINGLI MASTITLARNI DAVOLASH VA OLDINI OLISHNI TAKOMILLASHTIRISH. *Scientific Impulse*, 1(9), 1856-1860.
16. Doniyorov, S. Z., Dilmurodov, N. B., & Choriyev, O. N. (2022). Changes in the Amount of Calcium and Phosphorus in the Composition of the Femur Bone of Broiler Chickens in Postnatal Ontogenesis. *International Journal of Innovative Analyses and Emerging Technology*, 21-25.
17. Ilxomovich, Z. P. L., & Babakulovich, D. N. (2024). Morphofunction aspects of the digestive organs of the anterior compartment of chickens. *Web of Agriculture: Journal of Agriculture and Biological Sciences*, 2(3), 40-44.
18. Kuliiev, B., Eshmatov, G., Bobonazarov, E., Mukhtarov, B., & Akhmedov, S. (2024). Pathomorphological changes in sheep paramphistomatosis. In *BIO Web of Conferences* (Vol. 95, p. 01042). EDP Sciences.
19. Mukhitdinovich, A. S. (2023). Clinical signs of sheep paramphistomatosis. *American Journal of Pedagogical and Educational Research*, 12, 47-50.
20. Mukhitdinovich, A. S. (2023). Morphofunction changes in sheep paramphistomatosis. *Conferencea*, 31-34.
21. Mukhtarov, E. A., Bobokulovich, D. N., & Ishkuvvatovich, B. E. (2022). Dynamics of some indicators of sheep blood. *Journal of new century innovations*, 17(2), 36-42.
22. Mukhtorov, B. Z., & Dilmurodov, N. B. (2021). Pathomorphological changes in poultry pododermatitis in cows. *ACADEMICIA: An International Multidisciplinary Research Journal*, 11(4), 1679-1683.
23. Normuradova, R. Z., Dadabaeva, M. U., & Niazov, M. K. Z. (2018). Dynamics of change of indicators of firmness of capillaries of the mucous membrane of the prosthetic bed at patients with diabetes. In *international scientific review of the problems and prospects of modern science and education* (pp. 144-147).
24. Normuradova, Z. F., & Arzikulova, S. M. (2022). Quyonlarning biologik xususiyatlari. In *E Conference Zone* (pp. 44-47).
25. Rahmonov, O. A., Khudoynazarova, N. E., Karimov, M. G., & Ibragimov, B. H. (2022). Morphofunctional Properties of the Adrenal Glands of Rabbits. *Jundishapur Journal of Microbiology Research Article Published online*, 7245-7251.
26. Rakhmanova, G., Dilmurodov, N., Fedotov, D., Normuradova, Z., & Mukhtarov, E. (2023). Features of changes in morphometric indicators of ovaries of laying hens

during postnatal ontogenesis. In *E3S Web of Conferences* (Vol. 463, p. 01007). EDP Sciences.

27. Rakhmanova, G., Dilmurodov, N., Normuradova, Z., Mukhtarov, E., & Yakhshiyeva, S. (2024). Dynamics of changes in morpho-histological parameters of the ovary of the egg-bearing hens in postnatal ontogenesis. In *BIO Web of Conferences* (Vol. 95, p. 01041). EDP Sciences.

28. Raxmanova, G. S., Dilmurodov, N. B., Normuradova, Z. F., & Yaxshiyeva, S. X. (2025). Tuxum yo 'nalishidagi tovuqlar postnatal ontogenetida tuxum yo 'li voronka va oqsilli qismining mikroanatomik ko 'rsatkichlari. *Samarqand davlat veterinariya meditsinasi, chorvachilik va biotexnologiyalar universiteti axborotnomasi*, 15-19.

29. Shuxratovna, R. G., Babakulovich, D. N., & Nikolayevich, F. D. (2022). Anatomical Structure of Reproductive Organs of Chickens in the Egg Direction. *Middle European Scientific Bulletin*, 24, 240-243.

30. Turdiev, A., Yunusov, K., Bakirov, B., & Rakhmonov, U. (2025). Scientific foundations of protecting rabbits from the impact of ecological factors. *Shokh library*, 1(10).

31. Turdiev, A., Yunusov, K., Bakirov, B., & Rakhmonov, U. (2025). The impact of eliminating environmental factors, creating optimal zoohygienic parameters, providing nutritious feeding, and implementing preventive measures against diseases on the veterinary-sanitary quality of rabbit meat. *Shokh library*, 1(10).

32. Tursagatov, J. M., & Dilmurodov, N. B. (2023). Influence of the Conditions Regions on the Linear Parameters Forearm-Elbow Bones of Karakul Sheep. *European Journal of Veterinary Medicine*, 3(6), 8-11.

33. Tursagatov, J., & Dilmurodov, N. (2024). Characteristics of changes in postnatal ontogenesis of the compact substance thickness of the stylopodian bones of coral sheep. In *BIO Web of Conferences* (Vol. 95, p. 01012). EDP Sciences.

34. ULOMOVICH, M. E. A., & BABAKULOVICH, D. N. (2020). Morphogenesis Of The Hind Leg Distal Muscles Of Hissar Sheep Of Different Breeds In Different Ecological Conditions. *JournalNX*, 6(06), 25-29.

35. Yakhshieva, S. X., & Ulasheva, L. (2022). Postnatal Morphogenesis of Ross-308 Cross Broiler Chicken Muscle Stomach. *European Journal of Research Development and Sustainability*, 3(4), 93-94.

36. Yakhshieva, S. X., & Ulasheva, L. (2022). Postnatal Morphogenesis of Ross-308 Cross Broiler Chicken Muscle Stomach. *European Journal of Research Development and Sustainability*, 3(4), 93-94.

37. Yakhshieva, S. X. Morphogenesis Of Broyler Chicken Liver (Literature Analysis). *European Journal of Research Development and Sustainability*, 3(4), 91-92.

38. Yaxshiyeva, S. X., & M I, E. (2023). Ross-308 krossiga mansub broyler jo 'jalar muskulli oshqozonning postnatal ontogenezi.
39. Yunusov, H. B., Dilmurodov, N. B., Kuliev, B. A., & Akhmedov, S. M. (2021). The role of coccal microflora in the etiology and pathogenesis of respiratory diseases in lambs of the Karakul breed of Uzbekistan.
40. Yunusov, H. B., Dilmurodov, N. B., Kuliev, B. A., & Akhmedov, S. M. (2021). The Role Of Coccal Microflora In The Etiology And Pathogenesis Of Respiratory Diseases In Lambs Of The Karakul Breed Of Uzbekistan. *Int. J. of Aquatic Science*, 12(3), 1923-1928.
41. Yunusov, K., Eshmatov, S., Kulihev, B., Taylakov, T., Achilov, O., & Akhmedov, S. (2024). Pathomorphological changes in monieziosis of goats. In *BIO Web of Conferences* (Vol. 126, p. 01012). EDP Sciences.
42. Yunusov, X. B., Dilmurodov, N. B., & Beknazarov, S. S. (2024). Bir kunlik quyonlarda buyrak usti bezining anatomo-morfologik ko 'rsatkichlari.
43. Yunusov, X. B., Dilmurodov, N. B., Mirzoyev, Z. R., & Raxmonov, R. A. (2025). Go 'Sht Yo 'Nalishidagi Quyonlar Postnatal Ontogenetida Yelka Suyagining Morfometrik Xususiyatlari. *Miasto Przyszlosci*, 58, 199-209.
44. Zarpullaev, P. L., & Dilmurodov, N. (2024). Dynamics of change in the morphometric indicator of the muscularstomach in postnatal ontogenesis of chickens. *Web of Agriculture: Journal of Agriculture and Biological Sciences*, 2(12), 46-50.
45. Джаббаров, Ш. А., Юнусов, Х. Б., Федотов, Д. Н., & Нормурадова, З. Ф. (2021). Современное состояние гельминтофауны кошек.
46. Дилмуродов, Н. Б. (2009). Влияние экологических условий на онтогенез кости метаподий у овец. *Ветеринария*, (4), 42-43.
47. Дилмуродов, Н. Б., & Дониёров, Ш. (2019). Влияние экологических условий на динамику изменения влаги в составе костей метаподий в постнатальном онтогенезе.
48. Дилмуродов, Н. Б., Дониёров, Ш. З., & Чориев, О. Н. (2022). Бройлер жўжалар елка суяги таркибидаги кул ва умумий органик моддалар миқдорини постнатал онтогенезда ўзгариши. *Вестник Ветеринарии и Животноводства*, 2(1).
49. Дилмуродов, Н., & Худойназарова, Н. (2019). Закономерности изменения суставного и метаэпифизарного хряща костей акроподий в постнатальном онтогенезе.
50. Каримов, М. Г., Батыров, Р. М., & Халилулаев, Г. М. (1999). Использование преобразования Хартли в лазерной томографии. *Известия Академии Наук, серия физическая*, 63(6), 1117-1124.

51. Кулиев, Б. А., Ахмедов, С. М., & Зайниддинов, Б. Х. (2019). Лечение т-активином ягнят каракульской породы, больных пневмонией.
52. Кулиев, Б. А., Рахманова, Г. Ш., Абдурахмонова, П. У., & Ахмедов, С. М. (2019). К вопросу патоморфологии пневмонии каракульских ягнят.
53. Мухторов, Э. А. (2020). Действие условия содержания на морфологические показатели мускулатуры конечности постнатального онтогенеза у гиссарской породы овец. *In современное состояние, традиции и инновационные технологии в развитии апк* (pp. 137-140).
54. Нурмухамедов, Б. М., Дилмуровдов, Н. Б., Эшбуриев, С. Б., & Эшматов, Г. Х. (2019). Морфофункциональные изменения в яичниках коз под влиянием гонадотропных препаратов.
55. Рахманова, Г. Ш., & Федотов, Д. Н. (2021). Особенности гистологического строения яичника у кур-молодок. *In научное обеспечение животноводства Сибири* (pp. 466-467).
56. Ярмолович, В. А., Юнусов, Х. Б., Федотов, Д. Н., Даминов, А. С., Дилмуровдов, Н. Б., & Кулиев, Б. А. (2020). Морфофункциональная характеристика вымени у коров различной продуктивности.