КЛИНИЧЕСКОЕ И ПАТОГЕНЕТИЧЕСКОЕ ЗНАЧЕНИЕ ОБОСТРЕНИЙ ПРИ ХРОНИЧЕСКОЙ ОБСТРУКТИВНОЙ БОЛЕЗНИ ЛЁГКИХ

Кучкарова Ш.А^{1,2} Абдуганиева Э.А. 1,2 Ахатов И.М. 1

1.Республиканский специализированный научно-практический медицинский центр фтизиатрии и пульмонологии, Ташкент, Узбекистан 2. Ташкентский государственный медицинский университет, Ташкент, Узбекистан

Аннотация

Хроническая обструктивная болезнь лёгких (ХОБЛ) остаётся одной из наиболее распространённых и социально значимых патологий дыхательной системы, характеризующейся прогрессирующим ограничением воздушного потока и хроническим воспалением дыхательных путей. Обострения ХОБЛ играют ключевую роль в прогрессировании заболевания, влияя на частоту госпитализаций, ухудшение функции лёгких и качество жизни пациентов. Каждый эпизод обострения способствует дальнейшему снижению показателей ОФВ1, повышает системное воспаление и увеличивает риск смертности. В статье рассматриваются современные представления о патогенезе обострений, их клиническое значение и влияние на прогноз заболевания. Освещаются факторы риска, патофизиологические механизмы, а также современные методы профилактики и терапии обострений, направленные на снижение их частоты и тяжести. Подчёркивается необходимость индивидуализированного подхода к ведению пациентов с ХОБЛ для повышения эффективности лечения и улучшения долгосрочного прогноза.

Ключевые слова: ХОБЛ, обострение, патогенез, воспаление, клиническое течение, прогноз, профилактика, лечение.

CLINICAL AND PATHOGENETIC SIGNIFICANCE OF EXACERBATIONS IN CHRONIC OBSTRUCTIVE PULMONARY DISEASE

Shakhnoza Kuchkarova^{1,2}, Elnora Abralovna Abduganieva^{1,2} ¹Republican Specialized Scientific and Practical Medical Center of Phthisiology and Pulmonology, Tashkent, Uzbekistan. ² Tashkent State Medical University, Tashkent, Uzbekistan.

Abstract

Chronic obstructive pulmonary disease (COPD) remains one of the most prevalent and socially significant respiratory disorders, characterized by progressive airflow limitation and chronic inflammation of the airways. Exacerbations of COPD play a critical role in the disease progression, leading to accelerated decline in lung function, frequent hospitalizations, reduced quality of life, and increased mortality. Each exacerbation episode enhances systemic inflammation, contributes to further FEV1 decline, and worsens overall prognosis. This review article discusses the clinical and pathogenetic importance of COPD exacerbations, focusing on their mechanisms, risk factors, and consequences. Current strategies for the prevention and management of exacerbations, including pharmacological and non-pharmacological interventions, are analyzed. Emphasis is placed on the need for early identification of high-risk patients and an individualized therapeutic approach aimed at reducing exacerbation frequency and improving patient outcomes.

Keywords: COPD, exacerbation, pathogenesis, inflammation, prognosis, clinical features, prevention, treatment.

Хроническая обструктивная болезнь легких (ХОБЛ) – распространенное во всем мире заболевание характеризующееся высокой заболеваемостью и смертностью, требующее значительных также ресурсов затрат здравоохранения[65]. Хроническая обструктивная болезнь легких одна из распространенных неинфекционных заболеваний мире, распространенностью до 380 млн случаев [1,2] и ежегодным определением около 18 млн новых случаев [3,4]. По данным исследования GARD ею страдает 15,3% населения [5,6], с ежегодной смертностью в 3,3 млн случаев (6% от общих смертельных случаев в мире) [7,8,9]. В 2019 году ХОБЛ унесла жизни 3,23 млн человек [10]. На сегодняшний день смертность от ХОБЛ занимает 3-е место в глобальном бремени болезней, прогнозируется что к 2030 году оно изменится на 2-е место [11,12,13] и станет причиной 4,4 млн смертей [14,13], в группе пациентов 65 лет и старше летальность достигает 28% [73; с. 18-23], глобальное финансовое бремя составляет 82 млрд, евро в год [14,15] и набирает еще большие темпы роста[16-23]. Последние исследования в мире по изучению причин смерти среди больных ХОБЛ, указывают что наиболее высокая смертность фиксируется в группе больных ХОБЛ III-IV стадии [24]. Научный комитет GOLD (2024) подчеркивают все еще недостаточную осведомленность, недостаточную диагностику и недостаточное лечение ХОБЛ в Азии [25]. ХРЗ были признаны в Узбекистане 3-ей ведущей причиной смерти в 2017 году, а ХОБЛ была самой причиной распространенной смерти, связанной c респираторными заболеваниями [26,27]. В Узбекистане ХОБЛ входит в тройку

НИЗ лидирующих по распространенности, заболеваемость от которой возросла в 2,5 раза, временная нетрудоспособность на 12%, инвалидность на 3%. Экономический ущерб от ХОБЛ в мире высок, что также актуально для нашей страны, в 2016 году был равен 9,3 трлн, сумов, что составляет 4,7% ВВП [29,28,30]. В 2015 году из всех случаев смерти на НИЗ пришлось 79% случаев смерти в Узбекистане, что превосходит смертность от НИЗ на мировом уровне (71%) [29].

Хроническое воспаление играет важную роль в возникновении и развитии ХОБЛ, в основном поражая легочную паренхиму и окружающие дыхательные пути, что приводит к стойким респираторным симптомам и необратимому прогрессирующему ограничению воздушного потока [32]. Это хроническое воспаление характеризуется увеличением числа клеток, включая макрофаги, лимфоциты и нейтрофилы, которые в основном расположены в легочных кровеносных сосудах, периферических дыхательных путях и легочной паренхиме. У некоторых пациентов также может наблюдаться увеличение числа клеток, таких как эозинофилы, клетки Т-хелперов 2 (Th2) или внутренние могут лимфоциты типа (ILC2). Эти клетки выделять воспалительные медиаторы вместе с другими структурными клетками [34] с ХОБЛ часто имеют характерный воспалительный паттерн со значительным увеличением количества макрофагов, нейтрофилов, Т-лимфоцитов и Влимфоцитов в секретах дыхательных путей [66,122]. Согласно данным Барнс и др. (2016) показали этот паттерн воспаления включает как врожденные, так и приобретенные иммунные реакции (т. е. клеточный и гуморальный иммунитет), которые связаны пассивной активацией дендритных клеток. [34], что у пациентов с ХОБЛ была более тяжелая воспалительная реакция, чем у курильщиков без обструкции дыхательных путей, и этот воспалительный паттерн, однажды установившись, сохранялся даже после прекращения курения. Хотя курение является основным фактором риска окружающей среды для ХОБЛ, только у части курильщиков развивается заболевание [67]. Это может быть связано с различиями в реакции на курение среди людей, включая такие факторы, как генетическая восприимчивость, эпигенетические изменения и окислительный стресс [68]. Эти факторы могут усиливать воспаление, вызванное курением. Исследования показали, что вдыхание вредных газов или частиц может стимулировать макрофаги и эпителиальные клетки дыхательных путей к высвобождению различных хемокинов, а моноциты, нейтрофилы и лимфоциты могут накапливаться в лёгких под воздействием различных хемокинов. Это воспаление сохраняется у людей, бросивших курить. Механизм этого явления до сих пор неясен[69]. Предполагается, что это стойкое воспаление может быть связано с нарушениями регуляции иммунной системы и индивидуальными особенностями [34].

Два основных патологических типа ХОБЛ - это заболевание мелких дыхательных путей из-за фиброза вокруг бронхиол и эмфизема из-за разрушения альвеолярных стенок, которые можно различить с помощью компьютерной томографии (КТ). Хотя у некоторых пациентов в основном наблюдается заболевание мелких дыхательных путей или эмфизема, у большинства пациентов наблюдается смешанное состояние [35]. Эти патологические изменения в основном вызваны хроническим воспалением. Вдыхание вредных газов или частиц может вызвать воспаление легочной паренхимы и дыхательных путей. Различные воспалительные факторы могут привести к разрушению тканей, а затем к эмфиземе, повредить защитную и восстановительную функцию дыхательных путей и в конечном итоге привести к фиброзу мелких дыхательных путей и прогрессирующей необратимой обструкции воздушного потока [36]. Обычно, чем тяжелее симптомы ХОБЛ, тем сильнее воспаление дыхательных путей и оно продолжается после прекращения курения [37]. Даже у легких пациентов может возникнуть периферическая обструкция дыхательных путей и их потеря [38]. Эмфизема, наблюдаемая у курильщиков, в первую очередь проявляется вблизи утолщенных и суженных бронхиол, которые являются основными препятствиями при ХОБЛ, и механизм, посредством которого мелкие дыхательные пути утолщаются так близко к легочной ткани, разрушенной эмфиземой, остается неясным [36].

Исследования показали, что вдыхание вредных газов или частиц может стимулировать макрофаги и эпителиальные клетки дыхательных путей к высвобождению различных хемокинов, а моноциты, нейтрофилы и лимфоциты могут накапливаться в лёгких под воздействием различных хемокинов. Это воспаление сохраняется у людей, бросивших курить. Механизм этого явления до сих пор неясен [39]. Предполагается, что это стойкое воспаление может быть связано с нарушениями регуляции иммунной системы и индивидуальными особенностями [34]. Прогрессирование ХОБЛ также связано с накоплением воспалительных слизистых экссудатов в просвете и инфильтрацией стенки врожденными и адаптивными воспалительными иммунными клетками, которые образуют лимфоидные фолликулы [38]. Местное воспаление дыхательных путей приводит к усилению окислительного стресса и апоптоза за счет продукции активных форм кислорода (АФК) и активных форм азота (АФА) нейтрофилы, воспалительными клетками, такими как макрофаги цитотоксические Т-лимфоциты, что приводит к дальнейшему ухудшению [40,41]. Повышенная экспрессия различных воспалительных цитокинов, таких как интерлейкин (ИЛ)-1, ИЛ-3, ИЛ-6 и фактор некроза опухоли (ФНО), трансформирующий фактор роста (ТФР), была подтверждена при заболеваниях. При ХОБЛ ФНО-ИЛ-1 и ИЛ-6 усиливают воспалительный процесс и способствуют некоторым системным эффектам ХОБЛ. [42] В клиническом исследовании, проведенном Zhang и соавторами в 2021 году, уровень СРБ и фибриногена в плазме крови в период обострения был указан как важный биомаркер для прогноза [43].

Исследования подтвердили, что отсутствие локального IgA может косвенно приводить к бактериальной транслокации и воспалению мелких дыхательных путей, что приводит к ремоделированию дыхательных путей и в конечном итоге к необратимому ограничению воздушного потока [70].

Несколько исследований выявили наличие потенциально патогенных микроорганизмов (ППМ) в нижних дыхательных путях пациентов со стабильной ХОБЛ, что может привести к системному воспалению и повышению уровня Среактивного белка (СРБ), интерлейкина-8 (ИЛ-8) и фибриногена плазмы (ФИБ) [51,52].

Патогенез воспаления при ХОБЛ сложен и в основном связан с клетками, окислительным стрессом системным воспалением. ХОБЛ охватывает несколько различных клинических патофизиологических фенотипов, и крайне важно идентифицировать фенотипы ХОБЛ, которые эффективны для специфической терапии, что включает в себя определение типов заболевания и тестирование биомаркеров. [36.] Обострения являются одной из основных причин заболеваемости и смертности и обусловливают значительное медицинское и социально-экономическое бремя. [56] Обновленное определение обострения [57] описывает событие, при котором у пациента с ХОБЛ наблюдается одышка и/или кашель с мокротой, которые усиливаются в течение < 14 дней, что может сопровождаться тахипноэ и/или тахикардией и часто связано с местным и системным воспалением, вызванным инфекцией дыхательных путей, загрязнением или другим повреждением дыхательных путей. Обострение ХОБЛ часто вызывается либо инфекционной (вирусной или бактериальной), либо экологической причиной (загрязнение воздуха внутри или снаружи помещений, топливо из биомассы, курение). По оценкам, респираторные инфекции (в первую очередь вирусные) вызывают более 70% случаев. [58] Существуют факторы риска развития обострения, связанные с полом. Хотя исторически считалось, что ХОБЛ чаще встречается у курящих мужчин старшего возраста, у женщин вероятность обострения выше, чем у мужчин. В недавнем исследовании, включавшем более 22 000 пациентов, наблюдавшихся в течение 3 лет, риск первого умеренного или тяжелого обострения был на 17% выше у женщин, чем у мужчин, при медианном времени до первого обострения 504 дня у женщин и 637 дней у мужчин. Эти различия

были более выражены в более молодой возрастной группе (40-65 лет) и у пациентов из групп B, C и D по шкале GOLD. [59] В настоящее время проводится исследование (CAPTURE) с использованием опросника из 5 пунктов и пиковой скорости выдоха для оценки специфичности и чувствительности проводимой врачом общей практики при определении риска обострения. [60]

В исследовании Yun 2018 включен, оценивающих тяжесть заболевания или обратимость бронходилататора (39/41; 95,1%), показали значительную положительную связь между риском будущих обострений и большей тяжестью заболевания, оцениваемой по более выраженному нарушению функции легких (по показателям более низкого ОФВ1 соотношения ОФВ1 форсированная жизненная емкость легких или соотношения форсированного выдоха [25-75 //форсированная жизненная емкость легких) или более тяжелого класса А-D по Глобальной инициативе по хронической обструктивной болезни легких (GOLD), а также положительную связь между риском будущих обострений и отсутствием обратимости бронходилататора. [64] В 12 исследованиях, оценивающих шкалы качества жизни, 11 (91,7%) исследований сообщили о значимой связи между ухудшением показателей качества жизни и риском будущих обострений. Было обнаружено, что базовые баллы SGRQ [71,72.], шкалы депрессии Центра эпидемиологических исследований (повышенные баллы по которой могут указывать на ухудшение качества жизни) [73] и клинического опросника по ХОБЛ [74,75] связаны с будущим риском умеренных и/или тяжелых обострений ХОБЛ. Что касается баллов симптомов, шесть из восьми исследований, оценивающих связь между умеренными и тяжелыми или тяжелыми обострениями с баллами теста оценки ХОБЛ (САТ), сообщили о значимой и положительной связи. Кроме того, было обнаружено, что риск обострений от средней до тяжелой степени значительно выше у пациентов с более высокими баллами по шкале САТ (≥ 10) [72-78.], при этом одно исследование продемонстрировало, что балл по шкале САТ 15 увеличил прогностическую способность обострений по сравнению с баллом 10 или более [75] Среди 15 исследований, оценивавших связь модифицированных баллов Медицинского исследовательского совета (mMRC) с риском обострения от средней до тяжелой или тяжелой степени, 11 обнаружили, что риск обострений от средней до тяжелой или тяжелой степени был значительно связан с более высокими баллами по шкале mMRC (≥ 2) по сравнению с более низкими баллами. Кроме того, утренние и ночные симптомы (измеренные с помощью клинического опросника по ХОБЛ) были связаны с плохим состоянием здоровья и предсказывали будущие обострения [74]

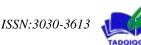
Заключения.

(ХОБЛ) Обострения хронической обструктивной болезни лёгких представляют собой важнейший фактор, определяющий течение, тяжесть и прогноз заболевания. Каждое обострение способствует прогрессированию воспалительного процесса, дальнейшему снижению функции качества жизни пациентов. Многочисленные исследования подтверждают, что частые обострения связаны с повышением уровня системного воспаления, ускоренной потерей ОФВ1 и увеличением риска Ранняя смертности. диагностика госпитализаций И обострений, своевременное лечение и профилактика имеют решающее значение для стабилизации состояния больных ХОБЛ и улучшения долгосрочного прогноза. Современные подходы к терапии включают использование бронходилататоров, ингаляционных кортикостероидов, вакцинации и немедикаментозных методов реабилитации. Следовательно, контроль за частотой и тяжестью обострений должен являться одной из основных целей ведения пациентов с ХОБЛ. Индивидуализированный подход к лечению и профилактике обострений позволит снизить бремя заболевания, улучшить качество жизни больных и продлить их продолжительность жизни.

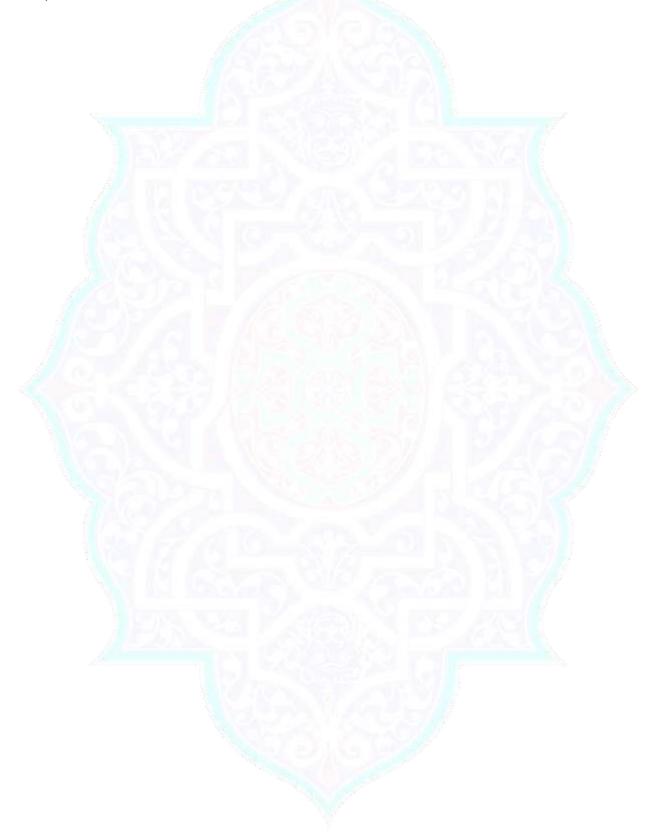
Литературы

- 1. Щербак С.Г., Камилова Т.А., Лисовец Д.Г., Сарана А.М.,,Юркина Е.А., Юркин А.К., Макаренко С.В., Кленкова Н.А., Анисенкова А.Ю., Сахаровская А.А., Глотов О.С.,, Глотов А.С.,, Максимов А.Г. Генетический полиморфизм системы гемостаза // Вестник Северо-Западного государственного медицинского университета им. И.И. Мечникова. - 2015. - Том 7. -№ 4. - С. 66-75.; с.020415,
- 2. Wang C, Xu J, Yang L, et al.. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study.//Lancet-2018. -№.391. -P.1706-17. 10.1016/SO 140-6736(18)30841-9c.
- 3. Hackshaw A., Morris JK., Boniface S. Low cigarette consumption and risk of coronaiy heart disease and stroke: Meta-analysis of 141 cohort studies in 55 study reports.// BMJ. - 2018. - Vol. 360. - P. j5855. c.1131-1141,
- 4. Viegi G, Maio S, Fasola S, Baldacci S. Global burden of chronic respiratory diseases. //J Aerosol Med Pulm Drug Deliv. -2020. -№.33. -P.171-7.;; c.171-177.
- 5. Bundhun PK, Gupta C, Xu GM. Major adverse cardiac events and mortality in chronic obstructive pulmonary disease following percutaneous coronary^ intervention: a systematic review and meta-analysis. H BMC Cardiovasc Disord. -2017 Jul 17. -№.17(1). -P.19L doi: 10.1186/s12872-017-0622-2. PMID: 28716059; PMCID: PMC5514536.; c.168-175,
- 6. Цеймах И. Я., Шойхет Я. Н., Цеймах А. Е. Роль механизмов воспаления в развитии состояния предрасположенности к тромбозам и тромбоэмболиям у

больных хронической обструктивной болезнью легких в сочетании с синдромом обструктивного апноэ сна // Туберкулёз и болезни лёгких. — 2020. — Т. 98, -№ 4. — C.24-31; c.356-392 2022


- 7. The Top 10 Causes of Death. Available online: https://www.who.int/newsroom/fact-sheets/detail/the-top-10-causes-of-death (accessed on 28 May 2021).; c. 202
- 8. World Health Organization. -2020. Date last accessed: 15 July 2021 www.who.int/news-room/fact-sheets/detail/the-top-20-causes-of-death; c. 20-25, 215; cited 2018, 107; c. 1021,
- 9. Zhou M. Wang H, Zeng X, « al.. Mortal[^], morb.d.ty, and nsk factors in China and ,.s • ,, 1990-2017- a systematic analysis for the global burden province 1990 201Z y 016,50,40-of disease study 2017.// Lancet-2019. K-3Y6"6<"b; c. 1145-1158.
- 10. Perla-Kajan J., Jakubowski H. Dysregulation of epigenetic mechanisms of gene expression in the pathologies of hyperhomocysteinemia. //Int. J. Mol. Sci. - 2019. -№.20. -P.3140.; c. 3429-3436.
- 11. Loskutova, T., Petulko, A. (2023). Determining the risk of miscarriage in genetic forms of thrombophilia. //Science Rise: Medical Science, -2023. -No.1
- 12. Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. //Nutr J. -2015. -№.14. -P.6.; c. 1736-1788
- 13. Ford ES. Hospital discharges, readmissions, and ED visits for COPD orbronchiectasis among US adults: findings from the nationwide inpatient sample 2001-2012 and nationwide emergency department sample 2006-2011.//Chest-2015. -№.147. -P.989-98. 10.1378/chest. 14-2146; c. 2052-2090
- 14. Paganelli, F.; Mottola, G.; Fromonot, J.; Marlinge, M.; Deharo, P.; Guieu, R.; Ruf, J. Hyperhomocysteinemia and cardiovascular disease: Is the adenosinergic system the missing link? //Int. J. Mol. Sci. -2021. -№.22. -P.1690.; c. 2573-2580,
- 15. Chen W, Thomas J, Sadatsafavi M, et al. Risk of cardiovascular comorbidity in patients with chronic obstructive pulmonary disease: a systematic review and metaanalysis. Lancet Respir Med 205;
- 16. Karita Dewi, Sadewa Ahmad Hamim, Pramudji Hastuti. Association between polymorphism of lysliasn endothelin-1 gene and endothelin-1 plasma level in Javanese obesity population. //Bangladesh Journal of Medical Science.-2019. -Vol. 18 No. 01 January'19. -P. 46-49. DOI:https://doi.org/0.3329/bjms.v 18i 1.39546; c. 287-291
- 17. Soriano JB, Abajobir AA, Abate KH. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonaiy disease and asthma, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. //Lancet Respir Med. -2017. -№5. -P.691-706.; c. 691-706

- 18. Grover, S.P.; Mackman, N. Tissue Factor: An Essential Mediator of Hemostasis and Trigger of Thrombosis. //Arterioscler. Thromb. Vase. Biol. -2018. -№.38. -P.709-725; c. 235-245
- 19. Foley JH, Conway EM. Cross talk pathways between coagulation and inflammation. //Circ Res. -2016. -№.118(9). -P.1392-1408; c. 989-998,
- 20. Rabe KF, Hurst JR, Suissa S. Cardiovascular disease and COPD: Dangerous liaisons? //Eur Respir Rev. -2018. -No.27. -P.180057.; c. 1931-1940,
- 21. Li LL, Yang Y, Wu S, Deng XF, Li JP, Ning N, et al. Meta-analysis of association between MTHFR C677T polymorphism and risk of myocardial infarction: evidence from forty-four case-control studies. //International Journal of Clinical and Experimental Medicine. -2016. -№.9(3). -P.5630-42; c. 3349-57,
- 22. Salvi S, Kumar GA, Dhaliwal RS. The burden of chronic respiratory diseases and their heterogeneity across the states of India: the Global Burden of Disease Study 1990-2016. //Lancet Glob Health. -2018. -№. 6. -P.1363-1374.; c. 1363-1374
- 23. Adeloye D, Chua S, Lee C, et al. Global and regional estimates of COPD prevalence: Systematic review and meta-analysis // J Glob Health -2015. -Vol.5: - P. 020415.c. 583-589.
- 24 Aguilar-Lacasana S., Lopez-Flores L, Gonzalez-Alzaga B. et. al. Methylenetetrahydrofolate Reductase (MTHFR) Gene Polymorphism and Infant's Anthropometry at Birth// Nutrients -2021. -Vol. 13(3). -P. 831. DOI: https ://doi.org/10.3390/nu 13030831.; c. 00895.
- 25. Agusti A, Celli BR, Criner GJ, et al. Global Initiative for Chronic Obstructive Lung Disease -2023 Report: GOLD Executive Summaiy // Eur Respir J 2023; 61: 2300239. doi: 10.1183/13993003.00239-2023.; c. 2300616.
- 26.WHO//MORTALITYDATABASE.2019.https://platform.who.int/mortality/ themes/themedetails/mdb/noncommunicable-diseases
- 27 Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. //Nutr J. -2015. -№.14. -P.6.; c. 1736-1788, ; c. 1736-1788.
- 29. WHO (2017a). Risk of premature death from the four target NCDs. In: Global Health Observatory data repository [online database]. II Geneva: World Health Organization (http://apps.who.in1/gho/data/node.main.A857 langen, -24 сентября 2018 г.;;с. 110-112
- 28. Lai J, Feng S, Xu S, Liu X. Effects of oral anticoagulant therapy in patients with pulmonary diseases. //Front Cardiovasc Med. -2022 Aug 10. -№.9. - P.987652, doi: 10.3389/fcvm.2022.987652; c. 121-131
- 30.Степанова Т.В., Иванов А.Н., Попыхова Э.Б., Лагутина Д.Д. Молекулярные маркеры эндотелиальной дисфункции // Современные проблемы науки и образования. - 2019. - № 1. ;-С.34-41.; с. 50.


- 31. Polosukhin V. V. et al. Small airway determinants of airflow limitation in chronic obstructive pulmonary disease //Thorax. – 2021. – T. 76. – №. 11. – C. 1079-1088.
- 32. Brightling C, Greening N. Airway inflammation in COPD: progress to precision medicine. Eur Respir J. (2019) 54. doi: 10.1183/13993003.00651-2019
- 33. Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of pulmonary disease. chronic obstructive Lancet. (2011)378:1015–26. doi: 10.1016/S0140-6736(11)60988-4
- 34 Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive Allergy Clin Immunol. pulmonary disease. (2016)138:16-27. doi: 10.1016/j.jaci.2016.05.011.
- 35 Barnes PJ. Inflammatory endotypes in COPD. Allergy. (2019) 74:1249–56. doi: 10.1111/all.13760.
- 36. Xu J, Zeng Q, Li S, Su Q, Fan H. Inflammation mechanism and research Front Immunol. 9;15:1404615. COPD. 2024 Aug doi: 10.3389/fimmu.2024.1404615. PMID: 39185405; PMCID: PMC11341368.
- 37 GLOBAL STRATEGY FOR THE DIAGNOSIS, MANAGEMENT, AND PREVENTION OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE (2023) REPORT) (2023). Available online at: https://goldcopd.org/2023-gold-report-2/.
- 38 Verleden S. E. et al. Small airway disease in pre-chronic obstructive pulmonary disease with emphysema: a cross-sectional study //American Journal of Respiratory and Critical Care Medicine. – 2024. – T. 209. – №. 6. – C. 683-692.
- 39 Eapen M. S. et al. Profiling cellular and inflammatory changes in the airway wall of mild to moderate COPD //Respirology. – 2017. – T. 22. – №. 6. – C. 1125-1132.). 34 Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. Clin Immunol. (2016)138:16-27. J Allergy doi: 10.1016/j.jaci.2016.05.011.
- 40 Zuo H, Xie X, Peng J, Wang L, Zhu R. Прогностическая ценность новых биомаркеров, основанных на воспалении, для лёгочной гипертензии при обострении хронической обструктивной болезни лёгких. Anal Cell Pathol (Amst). 2019. 14 октября (2019),
- 41. Shi T, Feng L. Blood biomarkers associated with acute type II respiratory failure in COPD: A meta-analysis. Clin Respir J. 2022 Feb;16(2):75-83. doi: 10.1111/crj.13464. Epub 2022 Jan 10. PMID: 35001553; PMCID: PMC9060028.
- 42 Du D. et al. Association between systemic inflammatory markers and chronic obstructive pulmonary disease: A population-based study //Heliyon. – 2024. – T. $10. - N_{\odot}$. 10.)

- 43 Ioannis Pantazopoulos, Kalliopi Magounaki, Ourania Kotsiou, Erasmia Rouka, Fotis Perlikos and esc, Incorporating Biomarkers in COPD Management: The Research Keeps Going. J.Pers. Med.2022, 12(3),p 379
- 51 Singh R, Mackay AJ, Patel AR, Garcha DS, Kowlessar BS, Brill SE, et al. Inflammatory thresholds and the species-specific effects of colonising bacteria in stable disease. chronic obstructive pulmonary Respir Res. (2014)15:114. doi: 10.1186/s12931-014-0114-1,
- 52 Simpson J. L. et al. COPD is characterized by increased detection of H aemophilus influenzae, S treptococcus pneumoniae and a deficiency of B acillus species //Respirology. -2016. - T. 21. - No. 4. - C. 697-704.
- 56. Katsoulis O, Toussaint M, Jackson MM, Mallia P, Footitt J, Mincham KT, Meyer GFM, Kebadze T, Gilmour A, Long M, Aswani AD, Snelgrove RJ, Johnston SL, Chalmers JD, Singanayagam A.Neutrophil extracellular traps promote immunopathogenesis of virus-induced COPD exacerbations. Nat Commun. 2024 Jul 9;15(1):5766. doi: 10.1038/s41467-024-50197-0. PMID: 38982052; PMCID: PMC11233599
- 57 Celli BR, Fabbri LM, Aaron SD, Agusti A, Brook R, Criner GJ, et al. An updated definition and severity classification of chronic obstructive pulmonary disease exacerbations. Am J Respir Crit Care Med 2021;204(11):1251-1258.
- 58.Ritchie AL, Wedzicha JA. Definition, causes, pathogenesis, consequences of chronic obstructive disease exacerbations. Clin Chest Med 2020;41(3):421-438.)
- 59. Stolz D, Kostikas K, Loefroth E, Fogel R, Gutzwiller FS, Conti V, et al. Differences in COPD exacerbation risk between men and women. CHEST 2019;156(4):674-684.)
- 60. Yawn BP, Han ML, Make BM, Mannino D, Brown RW, Meldrum C, et al. Protocol summary of the COPD assessment in primary care to identify undiagnosed respiratory disease and exacerbation risk (CAPTURE). Validation in primary care study. Chron Obstr Pulm Dis 2021;8(1):60-75.)
- 64. Hurst JR, Han MK, Singh B, Sharma S, Kaur G, de Nigris E, Holmgren U, Siddiqui MK. Prognostic risk factors for moderate-to-severe exacerbations in patients with chronic obstructive pulmonary disease: a systematic literature review. Respir Res. 2022 Aug 23;23(1):213. doi: 10.1186/s12931-022-02123-5. PMID: 35999538; PMCID: PMC9396841.
- 67 Янг И.А., Дженкинс К.Р., Сальви С.С. Хроническая обструктивная болезнь лёгких у некурящих: факторы риска, патогенез и значение для профилактики и лечения. Lancet Respir Med. (2022) 10:497-511. 10.1016/S2213-2600(21)00506-3.

- 68 Brandsma C. A. et al. Recent advances in chronic obstructive pulmonary disease pathogenesis: from disease mechanisms to precision medicine //The Journal of pathology. – 2020. – T. 250. – №. 5. – C. 624-635.
- 69 Eapen M. S. et al. Profiling cellular and inflammatory changes in the airway wall of mild to moderate COPD //Respirology. -2017. - T. 22. - No. 6. - C. 1125-1132.
- 70 Полосухин В.В., Ричмонд Б.В., Ду Р.Х., Кейтс Дж.М., Ву П., Ниан Х. и др. Дефицит секреторного IgA в отдельных мелких дыхательных путях связан с персистирующим воспалением и ремоделированием. Am J Respir Crit Care Med. (2017) 195:1010–21. doi: 10.1164/rccm.201604-0759OC.
- 71. Yun JH, Lamb A, Chase R, Singh D, Parker MM, Saferali A, Vestbo J, Tal-Singer R, Castaldi PJ, Silverman EK, et al. Blood eosinophil count thresholds and exacerbations in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2018;141:2037–2047.e10. 72 Yoon HY, Park SY, Lee CH, Byun MK, Na JO, Lee JS, Lee WY, Yoo KH, Jung KS, Lee JH. Prediction of first acute exacerbation using COPD subtypes identified by cluster analysis. Int J Chron Obstruct Pulmon Dis. 2019;14:1389–1397.],
- 72. Yoon HY, Park SY, Lee CH, Byun MK, Na JO, Lee JS, Lee WY, Yoo KH, Jung KS, Lee JH. Prediction of first acute exacerbation using COPD subtypes identified by cluster analysis. Int J Chron Obstruct Pulmon Dis. 2019;14:1389–1397.,
- 73. Yohannes AM, Mulerova H, Lavoie K, Vestbo J, Rennard SI, Wouters E, Hanania NA. The association of depressive symptoms with rates of acute exacerbations in patients with COPD: results from a 3-year longitudinal follow-up of the ECLIPSE cohort. J Am Med Dir Assoc. 2017;18:955–959.e6.
- 74. Tsiligianni I, Metting E, van der Molen T, Chavannes N, Kocks J. Morning and night symptoms in primary care COPD patients: a cross-sectional and longitudinal study. An UNLOCK study from the IPCRG. NPJ Prim Care Respir Med. 2016;26:16040.,
- 75. Jo YS, Yoon HI, Kim DK, Yoo CG, Lee CH. Comparison of COPD Assessment Test and Clinical COPD Questionnaire to predict the risk of exacerbation. Int J Chron Obstruct Pulmon Dis. 2018;13:101–107.)
- 76. Marçôa R, Rodrigues DM, Dias M, Ladeira I, Vaz AP, Lima R, Guimarães M. Classification of Chronic Obstructive Pulmonary Disease (COPD) according to the new Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2017: comparison with GOLD 2011. COPD. 2018;15:21-26.
- 77. Han MK, Quibrera PM, Carretta EE, Barr RG, Bleecker ER, Bowler RP, Cooper CB, Comellas A, Couper DJ, Curtis JL, et al. Frequency of exacerbations in patients with chronic obstructive pulmonary disease: an analysis of the SPIROMICS cohort. Lancet Respir Med. 2017;5:619–626.

78. Yii ACA, Loh CH, Tiew PY, Xu H, Taha AAM, Koh J, Tan J, Lapperre TS, Anzueto A, Tee AKH. A clinical prediction model for hospitalized COPD exacerbations based on "treatable traits". Int J Chron Obstruct Pulmon Dis. 2019;14:719–728.

