RESEARCH AND SOLUTION TO REDUCE DAMAGE TO SOYBEAN SEEDS IN THE SOWING BY MECHANICAL SEEDING APPARATUS

Komil Astanakulov Dilshod Yangiev

"Tashkent Institute of Irrigation and Agricultural Mechanization Engineers" National Research University Kari Niyaziy str., 39, 100000, Tashkent, Uzbekistan, E-mail: komil_uzmei@mail.ru

Abstract. In agriculture soybean is one of the most important crops. In this article results of research in the laboratory are shown for sowing soybean seeds using mechanical sowing apparatus. In the experiments, the number of measurements at the sowing depth was 100 and the number of lines was 10. The sowing capacity was 35-40 kg, the sowing depth was 4 cm and the width of the line was 90 cm. During the experiment, the difference in sowing measure between real sowing and SCHX-4 which has a mechanical apparatus was 6.75% and the average sowing depth and its standard deviation were 3.8 and 0.31 cm respectively. The width between the main and side rows was 89.5 and 92.5 cm respectively, and the damage level of seed caused by seeder SCHX-4 was 5.2 %. This apparatus did not reach agro-technical requirement. Thus a restrictor was installed was made from rubber and formed a semi molded formation on the hole where the seed enters the sowing apparatus which decreased the seed damage to 0.8 %.

Keywords: soybean, mechanical seeding apparatus, damaging of seed, adaptation, restrictor.

1 Introduction

Soybean is one of the most important crops. Therefore soybean production is increasing every year and the current area is approximately over 110 million hectares [1]. Currently, in Uzbekistan knowledge of soybean development is important. At the same time, research is underway to cultivate soybean as a rotation crop after wheat. While efforts are being made to establish large scale soybean production in Uzbekistan, there are currently a number of difficulties in cultivating this crop.

The density of the seedlings should be 200-300 thousands per hectare, 300-400 thousands seeds and 400-500 thousands early varieties. According to the sowing rate, the soil moisture content and the weight of 1000 grains should be 40-60 kg per hectare, and the depth should be 4-5 cm. Early observations have shown that not enough seedlings obtained from sowing in grain-free areas mainly because of damage caused by mechanical sowing machines.

Several studies have been conducted to sow soybean in different ways. L.Curto and others studied the slicing and injury caused by the sowing apparatus [2]. R.L.Parish, J.E.McCoy and R.P.Braves studied the sowing apparatus for sowing soybean seeds and determined its performance [3]. D.E.Ess and others examined a single with a spinning apparatus [4]. E.Boydak, M.Alpaslan, M.Hayta, S.Gercek and M.Simsek investigated the effect of irrigation on soybean growth in the composition of soybeans in the Harran region of Turkey [5]. D.Karayel studied planting of soybean and corn on a non-treated pneumatic slab [6]. H.Liu and others developed experimental platforms with vertical sowing discs used for sowing seeds and optimized their parameters [7]. H.L.Jia studied various sowing devices and developed a sowing apparatus for horizontally sowing into a sowing disc, allowing airflow with a pad drum directly on the machine without a ventilator, the device's diameter was 11 mm, and the quality of the work performed at a high operating speed (12 km/h) exceeded that of the existing pneumatic planting device with a range of 24.4 mm and a slit number of 13 [8]. S.M. Woo and others conducted research on the development of pneumo mechanical syrup, including corn and soybean seeds [9]. T.Atakulov studied the efficiency of direct sowing without shrubs in the southeastern Kazakhstan region [10]. In Uzbekistan the varieties of sowing schemes and parameters of sowing machines for sowing have been studied [11].

However, in the above studies, authors did not investigate, evaluate and improve the work of planting machines used for mechanical sowing. SChX-4 is a mechanical type, it is one of the most widely used machine for seeding plants in Uzbekistan. That is why it is important to research and improve it in sowing the soybean.

2 Methods

The work-quality indexes of the sowing used in State Standards 31345-2007 and field testing and soil conditions were determined according to State Standards 20915-2011 [12]. The number of soybeans per kilometer was calculated by calculating the path to the rotation of the cellar wheel.

Planting machines were set up from 35 to 40 seed shrubs per meter. The depth was equal to 4 cm by lifting and lowering the support of the plowshare on the surface of the earth. The plowshare and soil-reel pulse pressure on the soil was 30-35 kilograms. In the experiments, the number of measurements at the sowing depth was 100 and the number of lines was 10. The sowing capacity was 35-40 kg, the sowing depth was 4 cm and the width of the line was 90 cm. Continuous fall and burial of the seed was monitored by the operator.

3 Results and Discussion

The technical specification of the SCHX-4 seeder is shown in table 1.

Based on the established methods, experimental work on sowing seeds with the SChX-4 seeder with mechanical planting equipment was carried out. At the same time, the difference between the defined sowing norm and the actual sowing norm was 6.75 percent (10 percent maximum by ATR), mean sowing depth and its standard deviation were 3.8 cm and 0.31 cm (4.0 \pm 1.0 in ATR) and the width of the adjacent line spacing was 89.5 cm and 92.5 cm respectively (90.0 \pm 1.0 cm and 90.0 \pm 5.0 cm respectively). However, the damage rate of seeds was 5.2%, which does not correspond with ATR. It was found that the seeding machine caused mechanical damage to the seeds between the sowing slurry and the sowing rod.

The SChX-4 seeder has been tested on a universal stand under laboratory conditions to eliminate the deficiencies identified as a result of a field-test investigation of mechanical sowing (Fig. 1). Seeds were damaged as a criterion for evaluation.

Fig. 1. Universal stand designed for testing machines for planting

The SChX-4 seed sowing device has a semi molded cutter that ensures that the sowing unit is fitted to the shrub layer without damaging the shrub slices by the shingle rolling hole, which was prepared from metal list, plastic and rubber, was tested (Fig. 2 and Fig. 3).

1-metal barrier

2-plastic barrier

3-rubber barrier

Fig. 2. View of the barrier that should be installed on the seed hole

1-without barrier

2-metal barrier

3-plastic barrier

4-rubber barrier

Fig. 3. View of the barrier on the seed hole of the mechanic sowing apparatus

Experiments consisted of the number of turns of the mechanical planting apparatus, i.e., 75, 100, 125 and 150 rpm/min. and 5 repeats. The number of cycles of the mechanical planting apparatus was 75 rpm/min. and 150 rpm/min., and the damage rate of the seeds was higher than that of a metal cutting machine from 2.5% to 5.4%, and from plastics, which restricted cultivation by 1.8% to 3.6% (Table 1).

Table 1. Damage caused to seeds by mechanical sowing apparatus with a protector barrier constructed different materials

Type of barrier	Rotation number of the sowing apparatus (rpm)			
installed on the	75	100	125	150
mechanical sowing apparatus	Rate of damage seed (%)			
Metal	2.5	2.9	4.1	5.4
Plastic	1.8	2.1	3.0	3.6
Rubber	0.3	0.4	0.6	0.8

Although the damage caused by the rubber increased by 0.3% to 0.8% but was less than that caused by the metal and plastic containment limitations, it was determined that the specified requirements did not exceed 1%. Based on this experiment, it is recommended that a rubber sack be placed at the bottom of the mechanical planting apparatus when sowing soybean.

4 Conclusions

Based on the results of the experiments, it is desirable to place a semi molded cutout of rubber material into the sowing slots under the planting apparatus to reduce sowing damage when using mechanical planting devices. Based on the results of the experiments, it is advisable to install a semi-crescendo scope of rubber material on the seeding holes at the bottom of the seeding machine to minimize the damage to the seeds when sowing with mechanical seeding machines. Seed damage in the seeding machine with a rubber restraint was between 0.3 and 0.8 per cent, which was 4-6 times less than metal and plastic barriers and did not exceed 1 per cent.

References

- 1. www.fao.org/statistics/soybeans.
- 2. Curto, L., Zhang, G., Zakirov, X., Bucklin, R., Vu-Quoc, L., Hanes, D., Walton, O. Soybean impacts: Experiments and dynamic simulations. Transactions of the American Society of Agricultural Engineers. 40, 789–794 (1997).
- 3. Parish, R., McCoy, J., Bracy, R. Belt-type seeder for soybeans. Applied Engineering in Agriculture. 15,103–106 (1999).
- 4. Ess, D., Hawkins, S., Young, J., Christmas. E. Evaluation of the performance of a belt metering system for soybeans planted with a grain drill. Applied Engineering in Agriculture. 21, 965–969 (2005).
- 5. Boydak, E., Alpaslan, M., Hayta, M., Gerçek, S., Simsek. M. Seed composition of soybeans grown in the Harran region of Turkey as affected by row spacing and irrigation. Journal Agriculture Food Chemistry. 50, 4718–4720 (2002).
- 6. Karayel, D. Performance of a modified precision vacuum seeder for no-till sowing of maize and soybean. Soil and Tillage Research. 104, 121-125 (2009).
- 7. Liu, H., Xu, X., Fu, L., Wang, C. Design and parameter optimization on vertical shallow-basin type composites seed-plate soybean seed-metering devices. China Mechanical Engineering. 27, 3005–3011 (2016).
- 8. Jia, H. Design and key parameter optimization of an agitated soybean seed metering device with horizontal seed filling. International Journal Agriculture & Biology Engineering. 11, 76–87 (2018).
- 9. Woo, S., Uyeh, D., Sagong, M., Ha, Y. Development of seeder for mixed planting of corn and soybeans. International Journal of Agricultural and Biological Engineering. 10, 95–101 (2017).
- Atakulov, T., Ospanbaev, Z., Alkenov, Y. Permanent raised beds using; efficiency of direct seeding in the south-east region of Kazakhstan. Life Science Journal. 11, 554–557 (2014).
- Tolibayev, A., Aytmuratov, M., Xadjiev, A. Optimization main parameters of 11. pneumatic sowing-apparetus of soya bean seed by experimental method. News Lower Volga complex of Agrouniversity: Science and high professional education. 2(14), 139–144 (2009). (In Russ.)
- State Standards 31345-2007. Tractor seeders. Test methods. Standard inform, Moscow (2008). (In Russ.).