

## INHERITED DISORDERS OF AMINO ACID METABOLISM: BIOCHEMICAL FOUNDATIONS AND MOLECULAR MECHANISMS

*Mahmudova Madina Rasuljon qizi<sup>1</sup>*

*Shukurlayeva Mehriniso Xayrullo qizi<sup>2</sup>*

<sup>1</sup>*Student, Faculty of Medicine, Tashkent State Medical University (mahmudovamadina18.11@gmail.com)*

<sup>2</sup>*Assistant, Department of Medical and Biological Chemistry, Tashkent State Medical University (shukurlayevam@gmail.com)*

### Abstract

**Background:** Inborn errors of amino acid metabolism constitute a significant class of genetic disorders that may lead to severe neurological impairment, growth retardation, and systemic dysfunction if not diagnosed and managed promptly.

**Methods:** A comprehensive literature review was conducted, examining epidemiological data, biochemical mechanisms, diagnostic strategies, and therapeutic approaches related to major inherited amino acid metabolism disorders.

**Results:** Conditions such as phenylketonuria, maple-syrup urine disease, and homocystinuria exhibit distinct biochemical signatures enabling early detection through newborn screening. Tandem mass spectrometry has substantially improved diagnostic precision. Therapeutic strategies primarily include dietary restriction, cofactor supplementation, and metabolic detoxification, while emerging modalities—such as gene therapy and enzyme replacement—demonstrate promising potential.

**Conclusion:** Early identification via systematic newborn screening, combined with targeted dietary and pharmacological management, significantly enhances long-term outcomes. Future research is directed toward molecularly targeted therapies, including gene-editing techniques and small-molecule modulators.

**Keywords:** amino acid metabolism, inborn errors of metabolism, phenylketonuria, maple syrup urine disease, homocystinuria, mass spectrometry, newborn screening

### 1. Introduction

Inherited disorders of amino acid metabolism represent a diverse group of monogenic diseases characterized by enzymatic deficiencies affecting amino acid synthesis, degradation, or transport. Initially conceptualized by Archibald Garrod as “inborn errors of metabolism,” these disorders exemplify classical molecular pathologies arising from protein dysfunction [1]. Their clinical relevance stems from

the potential for irreversible neurological damage and multisystem involvement in untreated individuals.

The estimated collective incidence of these disorders is approximately 1 in 5,000 live births, although frequencies vary among populations due to genetic heterogeneity and consanguinity [2]. Most follow autosomal recessive inheritance. Pathophysiology typically involves toxic metabolite accumulation, deficiency of downstream products, or disruption of interconnected metabolic pathways.

This review summarizes biochemical foundations, clinical phenotypes, diagnostic advancements, and therapeutic innovations related to major amino acid metabolism disorders.

## 2. Methods

### 2.1 Literature Search Strategy

Databases including PubMed, Scopus, and Web of Science were searched for articles published between 2000 and 2024 using terms such as “inborn errors of amino acid metabolism,” “phenylketonuria,” “maple syrup urine disease,” “homocystinuria,” “tandem mass spectrometry,” and “newborn screening.”

### 2.2 Selection Criteria

Studies reporting epidemiology, molecular mechanisms, diagnostic methodology, or therapeutic outcomes were included. Non-English articles and studies with insufficient methodological clarity were excluded.

### 2.3 Data Analysis

Extracted data were synthesized narratively, focusing on biochemical pathways, diagnostic accuracy, and treatment efficacy.

## 3. Results

### 3.1 Epidemiology

Incidence varies geographically. PKU prevalence is elevated in certain regions (e.g., 1:2,600 in Turkey), whereas MSUD occurs at approximately 1:185,000 live births globally [3].

### 3.2 Major Disorders

#### Phenylketonuria (PKU)

- **Biochemical defect:** Phenylalanine hydroxylase (PAH) deficiency
- **Accumulated metabolites:** Phenylalanine ( $>1200 \mu\text{mol/L}$ ), phenylpyruvate, phenyllactate, phenylacetate
- **Clinical features:** Intellectual disability, microcephaly, seizures, behavioral problems, hypopigmentation

#### Maple Syrup Urine Disease (MSUD)

- **Biochemical defect:** Branched-chain  $\alpha$ -keto acid dehydrogenase complex deficiency

- **Accumulated metabolites:** Leucine, isoleucine, valine, alloisoleucine
- **Clinical features:** Neonatal encephalopathy, poor feeding, maple syrup odor, metabolic acidosis

### Homocystinuria

- **Biochemical defect:** Cystathione  $\beta$ -synthase deficiency
- **Accumulated metabolites:** Homocysteine ( $>50 \mu\text{mol/L}$ ), methionine
- **Clinical features:** Marfanoid habitus, lens dislocation, thrombosis, osteoporosis

### 3.3 Diagnostic Performance

Tandem mass spectrometry (MS/MS) shows high accuracy:

- **Sensitivity:** 99.2% for PKU
- **Specificity:** 99.9% for most amino acid disorders
- **Positive predictive value:** 85.7% [4]

### 3.4 Treatment Outcomes

#### Dietary therapy:

- PKU: phenylalanine maintained between 120–360  $\mu\text{mol/L}$   $\rightarrow$  normal cognitive development
- MSUD: lifelong branched-chain amino acid restriction

#### Pharmacological therapy:

- Sapropterin (BH4) responsive PKU: effective in 30–50%
- Pyridoxine-responsive homocystinuria: biochemical improvement in ~50%

## 4. Discussion

### 4.1 Pathophysiology

Clinical manifestations arise from:

1. **Toxic metabolite accumulation**
2. **Deficiency of essential metabolic products**
3. **Secondary disruption of metabolic pathways**

For example, PKU-associated neurotoxicity impairs neurotransmitter synthesis and myelination [5].

### 4.2 Diagnostic Advances

MS/MS permits simultaneous high-throughput quantification of amino acids and acylcarnitines, drastically improving early detection.

### 4.3 Therapeutic Innovations

- **Small-molecule chaperones:** BH4 for PKU
- **Enzyme replacement:** emerging experimental models
- **Gene therapy:** viral vector-mediated PAH delivery and CRISPR-based editing show early promise

### 4.4 Clinical Implications

Early diagnosis and strict metabolic control prevent neurological decline. Maternal metabolic control in PKU is crucial to avoid teratogenic effects.

#### 4.5 Limitations and Future Directions

Future work should prioritize:

- Novel therapies for refractory disorders
- Improving adherence to restrictive diets
- Identifying modifier genes
- Expanding universal newborn screening

#### 5. Conclusion

Inherited amino acid metabolism disorders are clinically significant yet manageable when detected early. Advances in screening, dietary therapy, and emerging gene-based interventions offer improved long-term outcomes. Lifelong multidisciplinary care and continued research remain essential.

#### References

1. Garrod AE. The incidence of alkaptonuria: a study in chemical individuality. *Lancet*. 1902;2:1616–1620.
2. Saudubray JM, Garcia-Cazorla A. Inborn errors of metabolism: pathophysiology and management. *Pediatr Clin North Am*. 2018;65(2):179–208.
3. Blau N, van Spronsen FJ, Levy HL. Phenylketonuria. *Lancet*. 2010;376(9750):1417–1427.
4. Wilcken B, Wiley V, Hammond J, et al. Screening newborns with tandem mass spectrometry. *N Engl J Med*. 2003;348(23):2304–2312.
5. van Spronsen FJ, van Wegberg AMJ, Ahring K, et al. PKU management guidelines. *Lancet Diabetes Endocrinol*. 2017;5(9):743–756.
6. Blackburn PR, Gass JM, Vairo FPE, et al. Maple syrup urine disease: mechanisms and treatment. *Appl Clin Genet*. 2017;10:57–66.
7. Morris AAM, Kožich V, Santra S, et al. CBS deficiency guidelines. *J Inherit Metab Dis*. 2017;40(1):49–74.