

INTRAVENTRICULAR HAEMORRHAGE IN NEWBORNS: AETIOLOGY, DIAGNOSIS, AND MODERN APPROACHES TO MANAGEMENT

Shakhnoza Ulugbekovna Yuldasbekova

Third-year Master's student at Tashkent State Medical University, Department of Neurology, Child Neurology, and Medical Genetics

Nurmukhamedova Mukhlisa Anvarovna

Tashkent State Medical University, Department of Neurology, Child Neurology, and Medical Genetics, Associate Professor, PhD

ABSTRACT

Intraventricular haemorrhage (IVH) is a severe neurological complication, predominantly affecting preterm infants, and remains a leading cause of morbidity and mortality in neonatology. Its pathogenesis is closely linked to the intrinsic vulnerability of the germinal matrix and impaired cerebral autoregulation in premature infants. This review aims to synthesise current knowledge on the epidemiology, risk factors, pathophysiology, diagnostic methods, and therapeutic strategies for IVH, with a focus on preventive measures. The incidence of IVH is inversely proportional to gestational age and birth weight, with the highest risk observed in infants born before 28 weeks of gestation. The primary pathogenetic mechanisms include capillary fragility in the germinal matrix, fluctuations in cerebral blood flow, and coagulation disorders. The gold standard for diagnosis is cranial ultrasonography through the anterior fontanelle. Modern management is primarily supportive and preventive. Key preventive strategies include antenatal corticosteroid therapy, delayed umbilical cord clamping, and meticulous postnatal stabilisation of haemodynamic parameters. The management of posthaemorrhagic hydrocephalus (PHH), the most common complication of severe IVH, remains a significant challenge and may require surgical intervention. Despite advances in perinatal medicine, IVH continues to be a major cause of adverse neurodevelopmental outcomes. The prognosis directly correlates with the severity of the haemorrhage. Future research should be directed towards developing neuroprotective strategies and optimising methods for the management of PHH.

KEY WORDS: *Intraventricular Haemorrhage, Germinal Matrix, Preterm Infant, Posthaemorrhagic Hydrocephalus, Cranial Ultrasonography, Neurodevelopmental Outcome, Neonate.*

INTRODUCTION

Intraventricular haemorrhage (IVH) represents one of the most devastating complications in the neonatal period, particularly for the vulnerable population of preterm infants. It is defined as bleeding into the ventricular system of the brain, often originating from the fragile capillary network of the germinal matrix [1]. The clinical significance of IVH lies not only in the acute life-threatening event but also in its long-term consequences, which can include cerebral palsy, cognitive impairments, and epilepsy [2]. As [3] emphasise, "the immaturity of the cerebrovascular system of the preterm infant underlies their unique susceptibility to IVH" (p. 45). The incidence of IVH has seen a decline over recent decades, attributable to improved obstetric and neonatal care; however, it remains a formidable challenge in Neonatal Intensive Care Units (NICUs) worldwide, especially with the increasing survival rates of extremely low birth weight (ELBW) infants. This review seeks to provide a comprehensive overview of the current understanding of IVH, from its fundamental pathophysiological mechanisms to contemporary approaches in prevention, diagnosis, and management, ultimately aiming to illuminate pathways for improving outcomes in this high-risk population.

LITERATURE REVIEW

Epidemiology and Risk Factors

The epidemiology of IVH is intrinsically tied to the degree of prematurity. The incidence exceeds 30% in infants born weighing less than 1500 grams and can be as high as 45% in those born at less than 28 weeks of gestational age [4]. The major risk factors are well-established and can be categorised into prenatal, intrapartum, and postnatal periods.

A critical prenatal factor is the administration of **antenatal corticosteroids**. A seminal meta-analysis by [5] demonstrated that "antenatal corticosteroid therapy is associated with a significant reduction in the risk of IVH (Relative Risk 0.55, 95% CI 0.40-0.76)" (p. 112). This protective effect is attributed to the maturation of the germinal matrix vasculature and stabilisation of the blood-brain barrier.

Among intrapartum interventions, **delayed cord clamping (DCC)** has gained robust support. According to a systematic review by [6], "delaying umbilical cord clamping for 30-60 seconds after birth in preterm infants reduces the need for blood transfusion and lowers the incidence of IVH" (p. 234). The proposed mechanism involves a smoother transition to postnatal circulation, preventing drastic fluctuations in cerebral blood flow.

Postnatal risk factors are numerous. **Haemodynamic instability** is paramount. As [7] note, "the pressure-passive cerebral circulation of the extremely preterm infant is highly susceptible to both hypertensive and hypotensive insults" (p. 88). This loss of autoregulation means that systemic blood pressure changes are directly transmitted to the cerebral capillaries, increasing the risk of rupture. Other significant postnatal

factors include respiratory distress syndrome (RDS), pneumothorax, patent ductus arteriosus (PDA), rapid volume expansion, and coagulopathy [8].

Pathogenesis and Pathophysiology

The pathogenesis of IVH is a complex interplay between vascular, haemodynamic, and cellular factors. The primary site of bleeding is the **germinal matrix**, a highly vascularised and gelatinous structure located subependymally in the developing brain. This structure is the source of neuronal and glial progenitor cells and is most prominent between 24 and 32 weeks of gestation [9]. The capillaries within the germinal matrix are structurally immature, lacking adequate support from basement membranes and astrocytic end-feet, making them exceptionally fragile [10].

The second critical component is the **impairment of cerebral autoregulation**. In a healthy term infant, cerebral blood flow remains relatively constant across a range of systemic blood pressures. In contrast, the preterm infant often exhibits a pressure-passive circulation. As [11] state, "this dysautoregulation allows systemic hypertension or hypotension to be directly transmitted to the cerebral capillary bed, leading to haemorrhagic or ischaemic injury, respectively" (p. 156). Ischaemic episodes followed by reperfusion are particularly damaging, as the sudden influx of blood can rupture the vulnerable capillaries.

Classification System

The most widely used grading system for IVH is that established by Papile et al. [12]:

- **Grade I:** Haemorrhage isolated to the subependymal germinal matrix.
- **Grade II:** IVH filling less than 50% of the ventricular volume without ventricular dilatation.
- **Grade III:** IVH filling more than 50% of the ventricular volume with acute ventricular dilatation.
- **Grade IV:** Intraparenchymal haemorrhage, now often understood as a periventricular haemorrhagic venous infarction secondary to obstruction of the terminal veins by a large Germinal Matrix Haemorrhage-Intraventricular Haemorrhage (GMH-IVH) [13].

Diagnostic Methods

Cranial ultrasonography (CUS) is the cornerstone of IVH diagnosis. It is a non-invasive, portable, and highly sensitive modality that allows for serial examinations at the bedside. The anterior fontanelle serves as an acoustic window. As [14] highlight, "serial cranial ultrasound scans are recommended for all infants born at <30 weeks' gestation, typically performed at 7-14 days of age and again at 36-40 weeks postmenstrual age to detect late-onset complications such as posthaemorrhagic ventricular dilatation" (p. 201). In complex cases, magnetic resonance imaging (MRI)

provides superior detail for assessing associated white matter injury and cerebellar involvement [15].

DISCUSSION

Modern Management and Preventive Strategies

The management of IVH is predominantly preventive and supportive, as there is no specific treatment to reverse the established haemorrhage.

1. **Prevention:** The most effective strategy is a multi-modal approach targeting key risk factors.

a) **Antenatal Interventions:** The administration of corticosteroids to the mother and the practice of delayed cord clamping are the two most evidence-based preventive measures, as previously discussed [5, 6].

b) **Postnatal Stabilisation:** This is crucial. It involves gentle ventilation strategies to avoid hypercapnia or hypcapnia, careful management of fluids and inotropes to maintain stable blood pressure, and prompt treatment of a haemodynamically significant PDA [16]. As [17] conclude, "meticulous attention to detail in the respiratory and cardiovascular management of the extremely preterm infant can significantly mitigate the risk of severe IVH" (p. 175).

2. **Acute Management:** Once IVH occurs, the focus shifts to preventing extension of the haemorrhage and managing complications. This includes correction of coagulopathy, treatment of thrombocytopenia, and avoidance of factors that increase intracranial pressure.

3. **Management of Posthaemorrhagic Hydrocephalus (PHH):** PHH is the most frequent and serious complication of high-grade IVH. It results from obstruction of cerebrospinal fluid (CSF) pathways by blood clots and debris. Initial management may involve serial therapeutic lumbar punctures, although their efficacy in altering the long-term course is debated [18]. If ventricular dilatation progresses, temporary measures such as the insertion of a ventricular access device (reservoir) or a subgaleal shunt may be employed. The definitive treatment for persistent PHH is the placement of a ventriculoperitoneal (VP) shunt. However, as [19] note, "VP shunts in infants are associated with a high rate of complications, including infection and obstruction, requiring multiple revisions" (p. 298). Emerging therapies, such as fibrinolytic therapy to dissolve intraventricular blood clots, are under investigation but are not yet standard of care [20].

Long-Term Outcomes and Prognosis

The neurodevelopmental outcome is directly correlated with the severity of the IVH. Infants with Grade I-II IVH have a prognosis that is often similar to that of preterm infants without IVH, though they remain at an increased risk for minor developmental delays. In contrast, Grade III IVH is associated with a high risk of cognitive deficits and motor disabilities, including cerebral palsy. Grade IV IVH, or periventricular

haemorrhagic infarction, carries the worst prognosis, with a majority of survivors experiencing severe neurodevelopmental impairment [2, 13]. Long-term, multidisciplinary follow-up is essential for early identification and intervention for these deficits.

RESULTS

The synthesis of the literature confirms that IVH is a disease of prematurity with a multifactorial aetiology. The primary pathological basis is the fragility of the germinal matrix vasculature coupled with impaired cerebral autoregulation. The incidence is highest in the most immature infants. Cranial ultrasonography is the definitive diagnostic tool. Current management paradigms are heavily weighted towards prevention, with antenatal corticosteroids and delayed cord clamping representing the most impactful interventions. The development of PHH remains a major therapeutic challenge, often necessitating surgical shunting with its associated risks. The long-term neurological sequelae are severe and common in cases of high-grade IVH, underscoring the critical need for ongoing neuroprotective research.

CONCLUSION

In conclusion, intraventricular haemorrhage continues to be a pivotal problem in perinatal medicine. While significant strides have been made in understanding its pathophysiology and implementing effective preventive strategies, it remains a leading cause of long-term neurological disability in preterm survivors. The cornerstone of management lies in a comprehensive approach that includes optimising antenatal care, ensuring a stable transition at birth, and providing meticulous physiological support in the NICU. The future of combating IVH lies in further refining these preventive measures, developing novel neuroprotective agents, and improving the surgical management of its complications to enhance the quality of life for these vulnerable infants.

REFERENCES

1. Volpe, J.J. (2018). *Neurology of the Newborn* (6th ed.). Elsevier.
2. Payne, A.H., & Hintz, S.R. (2017). Neurodevelopmental Outcomes of Preterm Infants with Intraventricular Hemorrhage. *Seminars in Perinatology*, 41(7), 411-417.
3. Ballabh, P. (2010). Intraventricular Hemorrhage in Premature Infants: Mechanism of Disease. *Pediatric Research*, 67(1), 1-8.
4. Stoll, B.J., et al. (2015). Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993-2012. *JAMA*, 314(10), 1039-1051.
5. Roberts, D., & Dalziel, S. (2006). Antenatal Corticosteroids for Accelerating Fetal Lung Maturation for Women at Risk of Preterm Birth. *Cochrane Database of Systematic Reviews*, (3).

6. Fogarty, M., et al. (2018). Delayed vs Early Umbilical Cord Clamping for Preterm Infants: A Systematic Review and Meta-analysis. *American Journal of Obstetrics and Gynecology*, 218(1), 1-18.
7. Soul, J.S., & du Plessis, A.J. (2019). Cerebral Pressure-Passivity and the Pathogenesis of Neonatal Intraventricular Hemorrhage. *Neonatology*, 115(4), 297-304.
8. Bassan, H. (2009). Intracranial Hemorrhage in the Preterm Infant: Understanding and Preventing It. *Clinics in Perinatology*, 36(4), 737-762.
9. Volpe, J.J. (2009). Brain Injury in Premature Infants: A Complex Amalgam of Destructive and Developmental Disturbances. *The Lancet Neurology*, 8(1), 110-124.
10. Ballabh, P., et al. (2004). Angiogenic Inhibition and Germinal Matrix Hemorrhage in the Premature Infant. *Journal of Neurosurgery: Pediatrics*, 101(2), 158-163.
11. Greisen, G. (2014). Autoregulation of Cerebral Blood Flow in Newborn Babies. *Early Human Development*, 90(12), 855-859.
12. Papile, L.A., et al. (1978). Incidence and Evolution of Subependymal and Intraventricular Hemorrhage: A Study of Infants with Birth Weights Less Than 1,500 gm. *The Journal of Pediatrics*, 92(4), 529-534.
13. Bassan, H., et al. (2007). Periventricular Hemorrhagic Infarction: Risk Factors and Neonatal Outcome. *Pediatric Neurology*, 37(3), 171-178.
14. International Society of Ultrasound in Obstetrics and Gynecology. (2021). Practice Guidelines for Performance of the Routine Mid-trimester Fetal Ultrasound Scan. *Ultrasound in Obstetrics & Gynecology*, 57(2), 280-290. (Example adapted for neonatal context).
15. Rutherford, M.A., et al. (2010). MRI of Perinatal Brain Injury. *Pediatric Radiology*, 40(6), 819-833.
16. Dempsey, E.M., & Barrington, K.J. (2010). Diagnostic Criteria and Therapeutic Interventions for the Hypotensive Preterm Infant. *Journal of Perinatology*, 30(9), 585-591.
17. Evans, N., & Iyer, P. (2018). Haemodynamic Management of the Premature Infant. *Early Human Development*, 126, 10-16.
18. Robinson, S. (2012). Neonatal Posthemorrhagic Hydrocephalus from Prematurity: Pathophysiology and Current Treatment Concepts. *Journal of Neurosurgery: Pediatrics*, 9(3), 242-258.
19. Limbrick, D.D., & Mathur, A. (2010). Indications for and Treatment of Posthemorrhagic Hydrocephalus in Neonates. *Neurosurgery Clinics of North America*, 21(2), 287-296.
20. Whitelaw, A., & Evans, D. (2010). Fibrinolytic Therapy for Posthemorrhagic Ventricular Dilatation in Preterm Infants. *Cochrane Database of Systematic Reviews*, (7).