

FORMATION OF NANOSTRUCTURES IN SEMICONDUCTORS AND THEIR THIN FILMS

Eshboltayev Iqbol Mamirjonovich¹

G'ofurov Saidkamol Zokirjon oglı²

Eshboltayev Ikromjon Iqbol oglı³

¹ *PhD, Professor, Department of Physics and
Astronomy, Kokand State University*

998911558383a@gmail.com

² *Master's student at Kokand State University*

saidkamolgofurov225@gmail.com

³ *Student at Kokand State University*

i7259442@gmail.com

Abstract

This paper presents a scientific analysis of the mechanisms of nanostructure formation in semiconductor materials and their thin films. The physicochemical factors influencing the formation of nano-scale structures, epitaxial growth processes, surface energy, and diffusion phenomena are discussed. In addition, the significance of nanostructured thin films in modern electronics and photonics is demonstrated.

Keywords: semiconductors, thin films, nanostructures, epitaxy, surface energy, quantum confinement.

Introduction

In modern semiconductor physics and technology, an in-depth scientific study of nanostructure formation is of great theoretical and practical importance. With the emergence of nano-scale structures, quantum confinement, surface, and interface states begin to play a dominant role in semiconductors. As a result, the energy spectrum of the material, charge carrier density, their mobility, and recombination mechanisms undergo significant changes.

The formation of nanostructures in thin-film semiconductors is primarily determined by the balance between thermodynamic stability conditions and kinetic processes. Atomic migration along the surface, adsorption–desorption processes, lattice mismatch, and elastic deformations are the main factors determining nanostructure morphology. Therefore, the problem of nanostructure formation represents a complex scientific issue located at the intersection of surface physics, solid-state physics, and semiconductor technology.

Mechanisms of Nanostructure Formation

1. Epitaxial growth processes

In thin films, nanostructures are often formed as a result of epitaxial growth. During epitaxy, lattice matching plays a crucial role:

1. **Frank–van der Merwe mechanism** – layer-by-layer growth;
2. **Volmer–Weber mechanism** – formation of islands;
3. **Stranski–Krastanov mechanism** – initial smooth layer formation followed by the emergence of quantum dots.

2. Influence of surface energy and deformation

Minimization of surface energy is one of the key factors in nanostructure formation. Elastic deformation energy arising from lattice mismatch determines the growth mode. This effect is especially important in the formation of quantum dots and nanowires.

3. Diffusion and kinetic factors

Surface diffusion of atoms, substrate temperature, and growth rate determine the size and density of nanostructures. At low temperatures, smaller nanostructures are formed, whereas at higher temperatures, larger nanostructures are observed.

Types of Nanostructures in Thin Films

1. Quantum wells – two-dimensional electronic systems;
2. Quantum dots – three-dimensional quantum-confined structures;
3. Nanowires – one-dimensional charge carrier channels;
4. Nanoporous layers – structures with a large surface area.

Scientific analysis of nanostructure formation in thin-film semiconductors shows that these processes require reconsideration of classical crystal growth theories at the nano-scale. From a thermodynamic point of view, the system tends to minimize its total free energy. However, at the nano-scale, surface energy dominates over volume energy, and the growth mechanism is often governed by kinetic constraints.

Elastic deformation energy arising from lattice constant mismatch in epitaxial layers leads to Stranski–Krastanov-type growth. In this case, an initial smooth wetting layer is formed, and after reaching a critical thickness, quantum dots or nanowires begin to emerge. Due to the small size of these nanostructures, their electronic states become discretized, resulting in enhanced quantum optical and quantum transport effects.

In addition, the formation of nanoporous layers is closely related to electrochemical and ion-beam processing methods, where local electric fields and surface reactivity play a significant role. Numerous studies indicate that controlling the density and distribution of nanostructures is crucial for ensuring the reproducibility of device parameters.

1. Nanostructure formation is determined by the balance between surface energy and deformation energy.
2. Epitaxial mechanisms play a dominant role in thin-film semiconductors.

3. Control over nanostructure size and density enhances device performance.
4. Scientific analysis requires the integration of experimental and theoretical approaches.

Proposals and Recommendations

1. It is recommended to develop comprehensive models that simultaneously account for surface energy, diffusion coefficients, and elastic deformation energies in order to gain a deeper understanding of nanostructure formation.
2. The application of real-time (in situ) diagnostic methods during thin-film epitaxial growth processes enables precise monitoring of nanostructure evolution.
3. To stabilize the electrical and optical properties of nanostructured layers, it is necessary to introduce surface passivation and encapsulation technologies.
4. It is advisable to expand interdisciplinary research in higher education and research centers focused on modeling and experimental investigation of nanostructure formation.

Conclusion

The formation of nanostructures in semiconductors and their thin films is one of the key directions of modern nanophysics and technology. Scientific analyses show that a deep understanding of formation mechanisms enables the development of high-performance nanoelectronic and optoelectronic devices. The proposed recommendations play an important role in the practical implementation of nanostructured systems.

References

- [1] Р.Я. Расулов. Поляризационные оптические и фотогальванические эффекты в полупроводниках при линейном и нелинейном поглощении света. Диссертация на соиск. уч. степени доктора физ.-мат. наук. Ст.-Петербург. - 1993. – 206 с.
- [2] Е.Л.Ивченко. // ФТТ. -1972.-Т.14. Вып.12. -С. 3489-3485.
- [3] Е.В.Берегулин, Д.П.Дворников, Е.Л.Ивченко, И.Д.Ярошецкий. // ФТП. -1975. -Т. 9. -Вып. 5. С. 876-886.
- [4] С. Б.Арифжанов, Е.Л.Ивченко. //ФТТ. - 1975. -Т. 17.-С. 81-89.
- [5] Р. Я. Расулов // ФТТ. -1993. – Т.35. – Вып. 6. –С. 1674-1678.
- [6] V. R.Rasulov, R. Ya. Rasulov, I. M.Eshboltaev // Physics of the Solid State. 2017. – Vol.59. – No.3. – Pp. 463–468.
- [7] V. R.Rasulov, R. Ya. Rasulov, I.M.Eshboltaev, M. X.Qo'chqorov // European Journal of Applied Physics. -2021. -Vol.3-4, - Issue5, -P. 48-56.
- [8] М. М. Глазов, Е. Л. Ивченко //Письма в ЖЭТФ. -2021. Т.113. -Вып. 1. -С. 10 – 20 (см. ссылки 63, 65).