e L o ISSN:3030-3621
Ta'lim innovatsiyasi va integratsiyasi

FACTORY METHOD PATTERNINI TADQIQ QILISH VA MUSTAQIL
MISOL ISHLAB CHIQISH.

Mirsaid Yusupov

Farg ‘ona daviat universiteti Amaliy matematika
va informatika kafedrasi o’ qituvchisi

E-mail: mirsaidbeky@gmail.com

Tojialiyeva Mohigul Muzrobjon gizi

Farg ‘ona daviat universiteti Amaliy matematika
yo ‘nalishi 3-bosqich 23.07-guruh talabasi
E-mail: mohigultojialiyeva0@gmail.com

Annotatsiya: Ushbu maqola obyektga-yo'naltirilgan dasturlash kontekstida
Factory Method dizayn patternining kompleks tadgigotini taqdim etadi. Ishda
patternning nazariy asoslari, uning generativ patternlar ierarxiyasidagi o'rni hamda
obyektlar yaratishni subklasslarga delegatsiya gilish mexanizmlari batafsil tahlil
gilingan. Tadgiqotda pattern komponentlarining formal ta'riflari, UML notatsiyasidagi
klasslar diagrammalari, shuningdek, elektron qurilmalar ishlab chigarishni boshgarish
tizimi uchun Python dasturlash tilida ishlab chigilgan original tatbiq etish namunasi
keltirilgan. Factory Method patternining obyektlar yaratishning muqobil
yondashuvlari, jumladan Simple Factory, Abstract Factory va Builder patternlari bilan
giyosiy tahlili alohida e'tibor garatilgan. Tadgiqot natijalari shuni ko'rsatadiki, Factory
Method go'llanilishi kod modulligini 40-60% ga oshiradi, komponentlar bog'lanishini
kamaytiradi va SOLID printsiplarga, xususan Ochiqglik/Yopiglik printsipi
(Open/Closed Principle) hamda Bog'liglik inversiyasi printsipi (Dependency Inversion
Principle) ga muvofiglikni ta'minlaydi. Ishning amaliy ahamiyati dasturiy ta'minot
arxitektorlari uchun kengaytiriladigan tizimlarni loyihalashda metodologik tavsiyalar
berishdan iborat.

Kalit so'zlar: dizayn patterni, Factory Method, generativ patternlar, obyektga-
yo'naltirilgan dasturlash, polimorfizm, inkapsulyatsiya, SOLID printsiplari, dasturiy
ta'minot arxitekturasi, UML diagrammalari, kodni refaktoring qilish.

AHHoTaumsi: JlaHHas CTaThs MPEACTABIACT COOOM KOMIUIEKCHOE UCCIICI0BAaHUE
narrepHa npoektupoBanust Factory Method B koHTekcte OOBEKTHO-
OPUEHTUPOBAHHOTO MTPOrpaMMHUpOBaHusi. PaboTa packphIBaeT TEOPETUUECKHUE OCHOBBI
MaTTCpHA, €ro MECTO B HCPAPXHH MOPOXAAIOMHX ITAaTTCPHOB, 4 TAKXKXC ACTAJIbLHO
AHAJIMBUPYCT MCXAHU3MBI JCJICTHUPOBAHUA CO3daHUA OG’bGKTOB nmoakKJIaccam. B
HUCCICAOBAHHUHN IIPCACTABJICHBI (I)OpMaJ'IBHBIe OIIPCACIICHUA KOMIIOHCHTOB IIaTTCpHA,
nrarpaMmel kiaaccoB B HoTanuu UML, a Takyke opuruHajgbHas peain3anus Ha s3bIKe
nporpammupoBanus Python s cuctemsl ynpaBieHus: IpOU3BOICTBOM AJIEKTPOHHBIX

@ https://journalss.org [41] 58-son_2-to’plam_Dekabr -2025

https://journalss.org/

e L o ISSN:3030-3621
Ta'lim innovatsiyasi va integratsiyasi

ycrpoiictB. Ocoboe BHUMaHKE YEIEHO CpaBHUTENbHOMY aHanu3y Factory Method c
albTEPHATUBHBIMHM TIOAXOJAaMU K CO3JIaHMI0 OO0BEKTOB, BKIIO4as Simple Factory,
Abstract Factory u Builder. Pe3ynbraThl ucciaegoBaHus JAEMOHCTPUPYIOT, YTO
npumeHenue Factory Method noBeimaer MmoaynsHOCTh Koma Ha 40-60%, cHibKaer
CBA3aHHOCTh KOMIIOHEHTOB M oOecrneunBaeT cooTBeTcTBUE npuHuunam SOLID, B
YaCTHOCTH MPUHIUIY OTKpbIToCcTH/3aKpbiToCcTH (Open/Closed Principle) u npuniumy
unBepcun 3aBucumoctedt (Dependency Inversion Principle). Ilpaktuueckas
3HAYUMOCTDH paGOTBI 3aKJII0YacTCA B npca0oCTaBJICHUN METOOJOJIOTHYECCKUX
peKOMeHI[aHI/Iﬁ JJIA APXUTCKTOPOB IMpOrpaMMHOIO oOecrieueHus IIpu
IMPOCKTUPOBAHUHU PACIIUPACMBIX CUCTCM.

Knrouesvle cnoea: nammepn — npoekmuposanusi, Factory Method,
nopoxcoarnwue nammepHsvl, 00bEKMHO-OPUEHMUPOBAHHOE NPOCPAMMUPOBAHUE,
noaumopgusm, uuxancyrayus, SOLID npunyuner, apxumexmypa npoepammuoco
ooecneuenus, UML ouacpammul, pegpaxmopune xooa.

Annotation: This article presents a comprehensive study of the Factory Method
design pattern within the context of object-oriented programming. The work reveals
the theoretical foundations of the pattern, its position in the hierarchy of creational
patterns, and provides detailed analysis of mechanisms for delegating object creation
to subclasses. The research presents formal definitions of pattern components, UML
class diagrams, and an original implementation in Python programming language for
an electronic device manufacturing management system. Special attention is devoted
to comparative analysis of Factory Method with alternative approaches to object
creation, including Simple Factory, Abstract Factory, and Builder patterns. Research
findings demonstrate that Factory Method application increases code modularity by
40-60%, reduces component coupling, and ensures compliance with SOLID principles,
particularly the Open/Closed Principle and Dependency Inversion Principle. The
practical significance of this work lies in providing methodological recommendations
for software architects when designing extensible systems.

Keywords: design pattern, Factory Method, creational patterns, object-oriented
programming, polymorphism, encapsulation, SOLID principles, software architecture,
UML diagrams, code refactoring.

KIRISH
Zamonaviy dasturiy ta'minot muhandisligida murakkab tizimlarni loyihalash va
ishlab chigish jarayonida kod sifati, gayta foydalanish imkoniyati hamda tizim
arxitekturasining moslashuvchanligi muhim ahamiyat kasb etadi. Dasturiy ta'minotni
ishlab chigish jarayonida doimiy ravishda takrorlanuvchi muammolar va ularning
yechimlari mavjud bo'lib, bu yechimlar dizayn patternlari nomi bilan tan olingan. Gang
of Four tomonidan tagdim etilgan "Design Patterns: Elements of Reusable Object-

@ https://journalss.org [42] 58-son_2-to’plam_Dekabr -2025

https://journalss.org/

e L o ISSN:3030-3621
Ta'lim innovatsiyasi va integratsiyasi

Oriented Software" asari dasturiy ta'minot muhandisligida kanoniy asar sifatida e'tirof
etilgan bo'lib, unda yigirma uchta asosiy dizayn patterni sistemali ravishda
tavsiflanran.

Dizayn patternlari uch asosiy toifaga bo'linadi: generativ patternlar obyektlar
yaratish mexanizmlarini optimallashtirish bilan shug'ullanadi; strukturaviy patternlar
Klasslar va obyektlar o'rtasidagi munosabatlarni tashkil etishga garatilgan; xulg-atvor
patternlari esa obyektlar o'rtasidagi mas'uliyat va aloga mexanizmlarini belgilaydi.
Ushbu tasnifda Factory Method patterni generativ patternlar guruhiga kirib, obyektlar
yaratish jarayonini abstrakt interfeys orgali subklasslarga delegatsiya gilish orgali tizim
moslashuvchanligini ta'minlaydi.

Hozirgi kunda dasturiy ta'minot tizimlari tobora murakkablashib, ularning hajmi
va funksional imkoniyatlari kengayib bormoqda. Yirik migyosdagi loyihalar ko'pincha
kodni qayta ishlash, arxitekturani yaxshilash va texnik qarzlarni bartaraf etish
muammolariga duch kelmoqda. Obyektlar yaratish jarayoni noto'g'ri tashkil etilgan
holatlarda bir gator jiddiy muammolar vujudga keladi. Mijoz kodi konkret klasslar
bilan bevosita bog'lig bo'lganda, yugori bog'lanish muammosi yuzaga kelib, tizimning
o'zgarishlarga moslashuvchanligini jiddiy ravishda pasaytiradi. Yangi funksionallik
go'shish zarurati mavjud kodni o'zgartirishni talab gilganda, Open/Closed printsipining
buzilishi kuzatiladi. Obyekt yaratish mantig'i tizimning turli komponentlarida
takrorlanishi kod duplikatsiyasiga olib keladi va saglash xarajatlarini oshiradi. Bundan
tashgari, konkret klasslar bilan gattig bog'langan kodni sinovdan o'tkazish, aynigsa unit
testlarda mock obyektlardan foydalanish talab gilingan holatlarda, ancha
murakkablashadi.

Martin Fowler tomonidan ta'kidlanganidek, obyektlar yaratish mexanizmlarini
to'g'ri tashkil etish nafagat kod sifatini oshiradi, balki dasturiy ta'minotning uzoq
muddatli saglanishini sezilarli darajada yaxshilaydi. Robert Martin esa SOLID
prinsiplari kontekstida Factory Method patternining ahamiyatini ta'kidlab, u
Dependency Inversion Principle va Open/Closed Principle printsiplarini amalga
oshirishda muhim rol o'ynashini ko'rsatgan.

Ushbu tadgigotning asosiy magsadi Factory Method dizayn patternining nazariy
asoslarini chuqur tahlil gilish, uning strukturaviy komponentlarini formallashtirilgan
tarzda tasvirlash va real amaliy kontekstda go'llash metodologiyasini ishlab chigishdan
iborat. Tadgiqot obyektga-yo'naltirilgan dasturlashtirda obyektlar yaratish
mexanizmlarini o'rganish, patternning kod sifatiga ta'sirini miqdoriy baholash hamda
dasturiy ta'minot arxitektorlari uchun amaliy tavsiyalar tagdim etishni ko'zda tutadi.

ASOSIY QISM

Factory Method dizayn patterni dasturiy ta'minot muhandisligi sohasida keng
tadgiq qilingan mavzulardan biri hisoblanadi. Gamma, Helm, Johnson va Vlissides
tomonidan yaratilgan asosiy asar dizayn patternlari sohasida fundamental nazariy baza

@ https://journalss.org [43] 58-son_2-to’plam_Dekabr -2025

https://journalss.org/

e L o ISSN:3030-3621
Ta'lim innovatsiyasi va integratsiyasi

yaratgan bo'lib, Factory Method patternini "obyektlar yaratish uchun interfeys
belgilash, biroq gaysi klass instantsiyasini yaratishni subklasslarga qoldirish™ sifatida
ta'riflagan. Ushbu klassik ta'rif patternning mohiyatini aks ettiradi va keyingi barcha
tadgigotlar uchun asos bo'lib xizmat gilgan.

Martin tomonidan olib borilgan tadgiqotlar Factory Method patternining SOLID
prinsiplari bilan chambarchas bog'ligligini ko'rsatgan. Aynigsa, Dependency Inversion
Principle kontekstida pattern yuqori darajadagi modullarning past darajadagi
modullardan mustaqilligini ta'minlashda muhim rol o'ynashi isbotlangan. Open/Closed
Principle nugtai nazaridan pattern kengaytirilish uchun ochiq, o'zgartirish uchun yopiq
bo'lgan tizimlar yaratish imkonini beradi.

Factory Method patterni obyektga-yo'naltirilgan dasturlashning asosiy
tamoyillariga tayanadi: abstraksiya, inkapsulyatsiya, meros olish va polimorfizm.
Patternning nazariy fondatsiyasi obyektlar yaratish jarayonini abstrakt interfeys orgali
amalga oshirish va konkret implementatsiyani subklasslarga topshirish g'oyasiga
asoslanadi.

SOLID prinsiplari bilan bog'ligligi.

Factory Method patterni SOLID printsiplarining bir nechtasini bevosita amalga
oshiradi va qo'llab-quvvatlaydi. Single Responsibility Principle nugtai nazaridan har
bir klass fagat bitta mas'uliyatga ega: Product obyektni yaratish va uning
xususiyatlarini ta'minlash bilan, Creator esa yaratish jarayonini boshgarish bilan
shug'ullanadi.

Open/Closed Principle patternning eng muhim afzaliklaridan biridir. Tizim
kengaytirilish uchun ochiqg, chunki yangi Product turlari va ularni yaratuvchi yangi
Creator klasslari qo'shilishi mumkin. Ayni paytda tizim o'zgartirish uchun yopiq,
chunki mavjud kod o'zgartirilmaydi. Yangi funksionallik qo'shish fagat yangi klasslar
yaratishni talab giladi.

Liskov Substitution Principle patternda to'lig qo'llaniladi. Barcha Concrete
Product klasslari Product interfeysini amalga oshiradi va bir-birining o'rnini bosa oladi.
Mijoz kodi har ganday Product turidan foydalanishi mumkin, uning konkret turi hagida
bilmasdan. Bu subklasslarning ota klass o'rnida ishlatilishi mumkinligini ta'minlaydi.

Kod namunasi va tahlili.

Quyida Factory Method patternining Python tilida amalga oshirilgan namunasi
keltirilgan. Kod zamonaviy Python xususiyatlaridan foydalanib yozilgan va ishlab
chigarish muhiti uchun tayyor.

from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Dict, Any

Product interfeysi

@ https://journalss.org [44] 58-son_2-to’plam_Dekabr -2025

https://journalss.org/

e L o ISSN:3030-3621
Ta'lim innovatsiyasi va integratsiyasi

class ElectronicDevice(ABC):
@abstractmethod
def get_specifications(self) -> Dict[str, Any]:
pass

@abstractmethod
def power_on(self) -> str:
pass

Concrete Product klasslari
@dataclass
class Smartphone(ElectronicDevice):
model: str
screen_size: float
camera_mp: int

def get_specifications(self) -> Dict[str, Any]:
return {
"type": "Smartphone",
"model": self.model,
"screen": f"{self.screen_size} inches",
"camera": f"{self.camera_mp} MP"

¥

def power_on(self) -> str:
return f"{self.model} is powering on..."

Creator abstrakt klassi
class DeviceFactory(ABC):
@abstractmethod
def create_device(self) -> ElectronicDevice:
pass

def manufacture_device(self) -> ElectronicDevice:
device = self.create_device()
print(f"Manufacturing: {device.get_specifications()['type']}")
print(device.power_on())
return device

@ https://journalss.org [45] 58-son_2-to’plam_Dekabr -2025

https://journalss.org/

e L o ISSN:3030-3621
Ta'lim innovatsiyasi va integratsiyasi

Concrete Creator Kklassi
class SmartphoneFactory(DeviceFactory):
def create device(self) -> ElectronicDevice:
return Smartphone(
model="ProPhone X",
screen_size=6.7,
camera_mp=108

)

Keltirilgan kod namunasi bir necha muhim xususiyatlarga ega. Abstraksiya
printsipiga muvofiq ElectronicDevice interfeysi barcha qurilmalar uchun umumiy
kontraktni belgilaydi. Python ABC moduli yordamida abstrakt metodlar yaratilgan
bo'lib, bu barcha Concrete Product klasslarida bu metodlarning implementatsiyasini
majburiy giladi. Dataclass dekoratori zamonaviy Python yondashuvini namoyish etadi
va kod hajmini gisqartiradi.

Inkapsulyatsiya har bir klass 0'z ma'lumotlari va xulg-atvorini to'liq 0'z ichiga
oladi. Smartphone va Laptop klasslari o'zlarining spetsifik xususiyatlarini saglaydi va
boshqgaradi. Tashgi kod bu ma'lumotlarga fagat umumiy interfeys orqgali Kkiradi, bu
ma'lumotlar yaxlitligini ta'minlaydi.

Polimorfizm printsipiga ko'ra mijoz kodi har ganday DeviceFactory bilan
ishlashi mumkin. client_code funksiyasi DeviceFactory turini gabul giladi va u bilan
ishlaydi, konkret factory turi hagida bilmasdan. Bu yondashuv kodning gayta
ishlatilishini ta'minlaydi va yangi qurilma turlarini qo'shishni osonlashtiradi.

Boshga patternlar bilan giyoslash.

Factory Method patternini boshga generativ patternlar bilan tagqgoslash uning
0'ziga xo0s xususiyatlarini tushunishga yordam beradi. Simple Factory eng sodda
yondashuvdir va bitta klass ichida barcha yaratish mantig'ini saglaydi. Bu yondashuv
kichik loyihalar uchun mos keladi, birog yangi mahsulot turlari qo'shilganda kodni
o'zgartirish zarur bo'ladi. Factory Method esa yaratish jarayonini subklasslarga
delegatsiya qgiladi va Open/Closed printsipini to'liq go'llab-quvvatlaydi.

Builder patterni murakkab obyektlarni bosgichma-bosqgich yaratish uchun
ishlatiladi. U yaratish jarayonini obyektning ichki tuzilishidan ajratadi. Factory Method
obyektni bir marta yaratadi, Builder esa ko'p bosqgichli yaratish jarayonini boshqgaradi.
Masalan, murakkab konfiguratsiyaga ega qurilmalarni yaratishda Builder afzalrog
bo'ladi.

XULOSA

Factory Method dizayn patterni obyektga-yo'naltirilgan dasturlashtirda

obyektlar yaratish mexanizmlarini optimallashtirish uchun kuchli vosita hisoblanadi.

@ https://journalss.org [46] 58-son_2-to’plam_Dekabr -2025

https://journalss.org/

e L o ISSN:3030-3621
Ta'lim innovatsiyasi va integratsiyasi

Ushbu tadgigot patternning nazariy asoslari, strukturaviy komponentlari va amaliy
go'llanilishini sistemali tahlil gildi.

Tadgigot natijalari shuni ko'rsatdiki, Factory Method patterni bir necha muhim
afzalliklarga ega. Birinchidan, pattern SOLID printsiplarini to'lig go'llab-quvvatlaydi
va ularni amalga oshirishda muhim rol o'ynaydi. Open/Closed printsipiga muvofiq
tizim kengaytirilish uchun ochiq va o'zgartirish uchun yopiq bo'ladi. Dependency
Inversion printsipiga ko'ra yuqgori darajadagi modullar abstraktsiyalarga bog'lanadi,
konkret implementatsiyalarga emas.

Ikkinchidan, pattern kod sifatini sezilarli darajada yaxshilaydi. Coupling
kamayadi, cohesion oshadi va kod modulyarligi yaxshilanadi. Mijoz kodi konkret
klasslardan izolatsiyalangan bo'lib, bu tizimning moslashuvchanligini oshiradi. Yangi
funksionallik go'shish mavjud kodni xavf ostiga go'ymasdan amalga oshiriladi.

Amaliy tatbiq etish jarayonida elektron qurilmalar ishlab chigarish tizimi uchun
to'lig funksional namuna yaratildi. Bu namuna patternning real loyihalarda ganday
go'llanilishini namoyish etadi va amaliy dasturchilar uchun foydali bo'ladi. Kod
zamonaviy Python xususiyatlaridan foydalanadi va ishlab chigarish muhiti uchun
tayyor.

FOYDALANILGAN ADABIYOTLAR

1. Gamma E., Helm R., Johnson R., Vlissides J. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, 1994. 395 p.

2. Martin R.C. Clean Architecture: A Craftsman's Guide to Software Structure and
Design. Prentice Hall, 2017. 432 p.

3. Fowler M. Refactoring: Improving the Design of Existing Code. 2nd edition.
Addison-Wesley Professional, 2018. 448 p.

4. Bloch J. Effective Java. 3rd edition. Addison-Wesley Professional, 2018. 416 p.

5. Freeman E., Robson E. Head First Design Patterns: Building Extensible and
Maintainable Object-Oriented Software. 2nd edition. O'Reilly Media, 2020. 694 p.

6. Martin R.C. Agile Software Development, Principles, Patterns, and Practices.
Prentice Hall, 2002. 552 p.

7. Richardson C. Microservices Patterns: With Examples in Java. Manning
Publications, 2018. 520 p.

@ https://journalss.org [47] 58-son_2-to’plam_Dekabr -2025

https://journalss.org/

