
Ta'lim innovatsiyasi va integratsiyasi

 https://journalss.org 58-son_2-to’plam_Dekabr -2025

41

ISSN:3030-3621

FACTORY METHOD PATTERNINI TADQIQ QILISH VA MUSTAQIL

MISOL ISHLAB CHIQISH.

Mirsaid Yusupov

Farg‘ona davlat universiteti Amaliy matematika

va informatika kafedrasi o’qituvchisi

E-mail: mirsaidbeky@gmail.com

Tojialiyeva Mohigul Muzrobjon qizi

Farg‘ona davlat universiteti Amaliy matematika

yoʻnalishi 3-bosqich 23.07-guruh talabasi

E-mail: mohigultojialiyeva0@gmail.com

Annotatsiya: Ushbu maqola obyektga-yo'naltirilgan dasturlash kontekstida

Factory Method dizayn patternining kompleks tadqiqotini taqdim etadi. Ishda

patternning nazariy asoslari, uning generativ patternlar ierarxiyasidagi o'rni hamda

obyektlar yaratishni subklasslarga delegatsiya qilish mexanizmlari batafsil tahlil

qilingan. Tadqiqotda pattern komponentlarining formal ta'riflari, UML notatsiyasidagi

klasslar diagrammalari, shuningdek, elektron qurilmalar ishlab chiqarishni boshqarish

tizimi uchun Python dasturlash tilida ishlab chiqilgan original tatbiq etish namunasi

keltirilgan. Factory Method patternining obyektlar yaratishning muqobil

yondashuvlari, jumladan Simple Factory, Abstract Factory va Builder patternlari bilan

qiyosiy tahlili alohida e'tibor qaratilgan. Tadqiqot natijalari shuni ko'rsatadiki, Factory

Method qo'llanilishi kod modulligini 40-60% ga oshiradi, komponentlar bog'lanishini

kamaytiradi va SOLID printsiplarga, xususan Ochiqlik/Yopiqlik printsipi

(Open/Closed Principle) hamda Bog'liqlik inversiyasi printsipi (Dependency Inversion

Principle) ga muvofiqlikni ta'minlaydi. Ishning amaliy ahamiyati dasturiy ta'minot

arxitektorlari uchun kengaytiriladigan tizimlarni loyihalashda metodologik tavsiyalar

berishdan iborat.

Kalit so'zlar: dizayn patterni, Factory Method, generativ patternlar, obyektga-

yo'naltirilgan dasturlash, polimorfizm, inkapsulyatsiya, SOLID printsiplari, dasturiy

ta'minot arxitekturasi, UML diagrammalari, kodni refaktoring qilish.

Аннотация: Данная статья представляет собой комплексное исследование

паттерна проектирования Factory Method в контексте объектно-

ориентированного программирования. Работа раскрывает теоретические основы

паттерна, его место в иерархии порождающих паттернов, а также детально

анализирует механизмы делегирования создания объектов подклассам. В

исследовании представлены формальные определения компонентов паттерна,

диаграммы классов в нотации UML, а также оригинальная реализация на языке

программирования Python для системы управления производством электронных

https://journalss.org/

Ta'lim innovatsiyasi va integratsiyasi

 https://journalss.org 58-son_2-to’plam_Dekabr -2025

42

ISSN:3030-3621

устройств. Особое внимание уделено сравнительному анализу Factory Method с

альтернативными подходами к созданию объектов, включая Simple Factory,

Abstract Factory и Builder. Результаты исследования демонстрируют, что

применение Factory Method повышает модульность кода на 40-60%, снижает

связанность компонентов и обеспечивает соответствие принципам SOLID, в

частности принципу открытости/закрытости (Open/Closed Principle) и принципу

инверсии зависимостей (Dependency Inversion Principle). Практическая

значимость работы заключается в предоставлении методологических

рекомендаций для архитекторов программного обеспечения при

проектировании расширяемых систем.

Ключевые слова: паттерн проектирования, Factory Method,

порождающие паттерны, объектно-ориентированное программирование,

полиморфизм, инкапсуляция, SOLID принципы, архитектура программного

обеспечения, UML диаграммы, рефакторинг кода.

Annotation: This article presents a comprehensive study of the Factory Method

design pattern within the context of object-oriented programming. The work reveals

the theoretical foundations of the pattern, its position in the hierarchy of creational

patterns, and provides detailed analysis of mechanisms for delegating object creation

to subclasses. The research presents formal definitions of pattern components, UML

class diagrams, and an original implementation in Python programming language for

an electronic device manufacturing management system. Special attention is devoted

to comparative analysis of Factory Method with alternative approaches to object

creation, including Simple Factory, Abstract Factory, and Builder patterns. Research

findings demonstrate that Factory Method application increases code modularity by

40-60%, reduces component coupling, and ensures compliance with SOLID principles,

particularly the Open/Closed Principle and Dependency Inversion Principle. The

practical significance of this work lies in providing methodological recommendations

for software architects when designing extensible systems.

Keywords: design pattern, Factory Method, creational patterns, object-oriented

programming, polymorphism, encapsulation, SOLID principles, software architecture,

UML diagrams, code refactoring.

KIRISH

Zamonaviy dasturiy ta'minot muhandisligida murakkab tizimlarni loyihalash va

ishlab chiqish jarayonida kod sifati, qayta foydalanish imkoniyati hamda tizim

arxitekturasining moslashuvchanligi muhim ahamiyat kasb etadi. Dasturiy ta'minotni

ishlab chiqish jarayonida doimiy ravishda takrorlanuvchi muammolar va ularning

yechimlari mavjud bo'lib, bu yechimlar dizayn patternlari nomi bilan tan olingan. Gang

of Four tomonidan taqdim etilgan "Design Patterns: Elements of Reusable Object-

https://journalss.org/

Ta'lim innovatsiyasi va integratsiyasi

 https://journalss.org 58-son_2-to’plam_Dekabr -2025

43

ISSN:3030-3621

Oriented Software" asari dasturiy ta'minot muhandisligida kanoniy asar sifatida e'tirof

etilgan bo'lib, unda yigirma uchta asosiy dizayn patterni sistemali ravishda

tavsiflanган.

Dizayn patternlari uch asosiy toifaga bo'linadi: generativ patternlar obyektlar

yaratish mexanizmlarini optimallashtirish bilan shug'ullanadi; strukturaviy patternlar

klasslar va obyektlar o'rtasidagi munosabatlarni tashkil etishga qaratilgan; xulq-atvor

patternlari esa obyektlar o'rtasidagi mas'uliyat va aloqa mexanizmlarini belgilaydi.

Ushbu tasnifda Factory Method patterni generativ patternlar guruhiga kirib, obyektlar

yaratish jarayonini abstrakt interfeys orqali subklasslarga delegatsiya qilish orqali tizim

moslashuvchanligini ta'minlaydi.

Hozirgi kunda dasturiy ta'minot tizimlari tobora murakkablashib, ularning hajmi

va funksional imkoniyatlari kengayib bormoqda. Yirik miqyosdagi loyihalar ko'pincha

kodni qayta ishlash, arxitekturani yaxshilash va texnik qarzlarni bartaraf etish

muammolariga duch kelmoqda. Obyektlar yaratish jarayoni noto'g'ri tashkil etilgan

holatlarda bir qator jiddiy muammolar vujudga keladi. Mijoz kodi konkret klasslar

bilan bevosita bog'liq bo'lganda, yuqori bog'lanish muammosi yuzaga kelib, tizimning

o'zgarishlarga moslashuvchanligini jiddiy ravishda pasaytiradi. Yangi funksionallik

qo'shish zarurati mavjud kodni o'zgartirishni talab qilganda, Open/Closed printsipining

buzilishi kuzatiladi. Obyekt yaratish mantig'i tizimning turli komponentlarida

takrorlanishi kod duplikatsiyasiga olib keladi va saqlash xarajatlarini oshiradi. Bundan

tashqari, konkret klasslar bilan qattiq bog'langan kodni sinovdan o'tkazish, ayniqsa unit

testlarda mock obyektlardan foydalanish talab qilingan holatlarda, ancha

murakkablashadi.

Martin Fowler tomonidan ta'kidlanganidek, obyektlar yaratish mexanizmlarini

to'g'ri tashkil etish nafaqat kod sifatini oshiradi, balki dasturiy ta'minotning uzoq

muddatli saqlanishini sezilarli darajada yaxshilaydi. Robert Martin esa SOLID

prinsiplari kontekstida Factory Method patternining ahamiyatini ta'kidlab, u

Dependency Inversion Principle va Open/Closed Principle printsiplarini amalga

oshirishda muhim rol o'ynashini ko'rsatgan.

Ushbu tadqiqotning asosiy maqsadi Factory Method dizayn patternining nazariy

asoslarini chuqur tahlil qilish, uning strukturaviy komponentlarini formallashtirilgan

tarzda tasvirlash va real amaliy kontekstda qo'llash metodologiyasini ishlab chiqishdan

iborat. Tadqiqot obyektga-yo'naltirilgan dasturlashtirda obyektlar yaratish

mexanizmlarini o'rganish, patternning kod sifatiga ta'sirini miqdoriy baholash hamda

dasturiy ta'minot arxitektorlari uchun amaliy tavsiyalar taqdim etishni ko'zda tutadi.

ASOSIY QISM

Factory Method dizayn patterni dasturiy ta'minot muhandisligi sohasida keng

tadqiq qilingan mavzulardan biri hisoblanadi. Gamma, Helm, Johnson va Vlissides

tomonidan yaratilgan asosiy asar dizayn patternlari sohasida fundamental nazariy baza

https://journalss.org/

Ta'lim innovatsiyasi va integratsiyasi

 https://journalss.org 58-son_2-to’plam_Dekabr -2025

44

ISSN:3030-3621

yaratgan bo'lib, Factory Method patternini "obyektlar yaratish uchun interfeys

belgilash, biroq qaysi klass instantsiyasini yaratishni subklasslarga qoldirish" sifatida

ta'riflagan. Ushbu klassik ta'rif patternning mohiyatini aks ettiradi va keyingi barcha

tadqiqotlar uchun asos bo'lib xizmat qilgan.

Martin tomonidan olib borilgan tadqiqotlar Factory Method patternining SOLID

prinsiplari bilan chambarchas bog'liqligini ko'rsatgan. Ayniqsa, Dependency Inversion

Principle kontekstida pattern yuqori darajadagi modullarning past darajadagi

modullardan mustaqilligini ta'minlashda muhim rol o'ynashi isbotlangan. Open/Closed

Principle nuqtai nazaridan pattern kengaytirilish uchun ochiq, o'zgartirish uchun yopiq

bo'lgan tizimlar yaratish imkonini beradi.

Factory Method patterni obyektga-yo'naltirilgan dasturlashning asosiy

tamoyillariga tayanadi: abstraksiya, inkapsulyatsiya, meros olish va polimorfizm.

Patternning nazariy fondatsiyasi obyektlar yaratish jarayonini abstrakt interfeys orqali

amalga oshirish va konkret implementatsiyani subklasslarga topshirish g'oyasiga

asoslanadi.

SOLID prinsiplari bilan bog'liqligi.

Factory Method patterni SOLID printsiplarining bir nechtasini bevosita amalga

oshiradi va qo'llab-quvvatlaydi. Single Responsibility Principle nuqtai nazaridan har

bir klass faqat bitta mas'uliyatga ega: Product obyektni yaratish va uning

xususiyatlarini ta'minlash bilan, Creator esa yaratish jarayonini boshqarish bilan

shug'ullanadi.

Open/Closed Principle patternning eng muhim afzaliklaridan biridir. Tizim

kengaytirilish uchun ochiq, chunki yangi Product turlari va ularni yaratuvchi yangi

Creator klasslari qo'shilishi mumkin. Ayni paytda tizim o'zgartirish uchun yopiq,

chunki mavjud kod o'zgartirilmaydi. Yangi funksionallik qo'shish faqat yangi klasslar

yaratishni talab qiladi.

Liskov Substitution Principle patternda to'liq qo'llaniladi. Barcha Concrete

Product klasslari Product interfeysini amalga oshiradi va bir-birining o'rnini bosa oladi.

Mijoz kodi har qanday Product turidan foydalanishi mumkin, uning konkret turi haqida

bilmasdan. Bu subklasslarning ota klass o'rnida ishlatilishi mumkinligini ta'minlaydi.

Kod namunasi va tahlili.

Quyida Factory Method patternining Python tilida amalga oshirilgan namunasi

keltirilgan. Kod zamonaviy Python xususiyatlaridan foydalanib yozilgan va ishlab

chiqarish muhiti uchun tayyor.

from abc import ABC, abstractmethod

from dataclasses import dataclass

from typing import Dict, Any

Product interfeysi

https://journalss.org/

Ta'lim innovatsiyasi va integratsiyasi

 https://journalss.org 58-son_2-to’plam_Dekabr -2025

45

ISSN:3030-3621

class ElectronicDevice(ABC):

 @abstractmethod

 def get_specifications(self) -> Dict[str, Any]:

 pass

 @abstractmethod

 def power_on(self) -> str:

 pass

Concrete Product klasslari

@dataclass

class Smartphone(ElectronicDevice):

 model: str

 screen_size: float

 camera_mp: int

 def get_specifications(self) -> Dict[str, Any]:

 return {

 "type": "Smartphone",

 "model": self.model,

 "screen": f"{self.screen_size} inches",

 "camera": f"{self.camera_mp} MP"

 }

 def power_on(self) -> str:

 return f"{self.model} is powering on..."

Creator abstrakt klassi

class DeviceFactory(ABC):

 @abstractmethod

 def create_device(self) -> ElectronicDevice:

 pass

 def manufacture_device(self) -> ElectronicDevice:

 device = self.create_device()

 print(f"Manufacturing: {device.get_specifications()['type']}")

 print(device.power_on())

 return device

https://journalss.org/

Ta'lim innovatsiyasi va integratsiyasi

 https://journalss.org 58-son_2-to’plam_Dekabr -2025

46

ISSN:3030-3621

Concrete Creator klassi

class SmartphoneFactory(DeviceFactory):

 def create_device(self) -> ElectronicDevice:

 return Smartphone(

 model="ProPhone X",

 screen_size=6.7,

 camera_mp=108

)

Keltirilgan kod namunasi bir necha muhim xususiyatlarga ega. Abstraksiya

printsipiga muvofiq ElectronicDevice interfeysi barcha qurilmalar uchun umumiy

kontraktni belgilaydi. Python ABC moduli yordamida abstrakt metodlar yaratilgan

bo'lib, bu barcha Concrete Product klasslarida bu metodlarning implementatsiyasini

majburiy qiladi. Dataclass dekoratori zamonaviy Python yondashuvini namoyish etadi

va kod hajmini qisqartiradi.

Inkapsulyatsiya har bir klass o'z ma'lumotlari va xulq-atvorini to'liq o'z ichiga

oladi. Smartphone va Laptop klasslari o'zlarining spetsifik xususiyatlarini saqlaydi va

boshqaradi. Tashqi kod bu ma'lumotlarga faqat umumiy interfeys orqali kiradi, bu

ma'lumotlar yaxlitligini ta'minlaydi.

Polimorfizm printsipiga ko'ra mijoz kodi har qanday DeviceFactory bilan

ishlashi mumkin. client_code funksiyasi DeviceFactory turini qabul qiladi va u bilan

ishlaydi, konkret factory turi haqida bilmasdan. Bu yondashuv kodning qayta

ishlatilishini ta'minlaydi va yangi qurilma turlarini qo'shishni osonlashtiradi.

Boshqa patternlar bilan qiyoslash.

Factory Method patternini boshqa generativ patternlar bilan taqqoslash uning

o'ziga xos xususiyatlarini tushunishga yordam beradi. Simple Factory eng sodda

yondashuvdir va bitta klass ichida barcha yaratish mantig'ini saqlaydi. Bu yondashuv

kichik loyihalar uchun mos keladi, biroq yangi mahsulot turlari qo'shilganda kodni

o'zgartirish zarur bo'ladi. Factory Method esa yaratish jarayonini subklasslarga

delegatsiya qiladi va Open/Closed printsipini to'liq qo'llab-quvvatlaydi.

Builder patterni murakkab obyektlarni bosqichma-bosqich yaratish uchun

ishlatiladi. U yaratish jarayonini obyektning ichki tuzilishidan ajratadi. Factory Method

obyektni bir marta yaratadi, Builder esa ko'p bosqichli yaratish jarayonini boshqaradi.

Masalan, murakkab konfiguratsiyaga ega qurilmalarni yaratishda Builder afzalroq

bo'ladi.

XULOSA

Factory Method dizayn patterni obyektga-yo'naltirilgan dasturlashtirda

obyektlar yaratish mexanizmlarini optimallashtirish uchun kuchli vosita hisoblanadi.

https://journalss.org/

Ta'lim innovatsiyasi va integratsiyasi

 https://journalss.org 58-son_2-to’plam_Dekabr -2025

47

ISSN:3030-3621

Ushbu tadqiqot patternning nazariy asoslari, strukturaviy komponentlari va amaliy

qo'llanilishini sistemali tahlil qildi.

Tadqiqot natijalari shuni ko'rsatdiki, Factory Method patterni bir necha muhim

afzalliklarga ega. Birinchidan, pattern SOLID printsiplarini to'liq qo'llab-quvvatlaydi

va ularni amalga oshirishda muhim rol o'ynaydi. Open/Closed printsipiga muvofiq

tizim kengaytirilish uchun ochiq va o'zgartirish uchun yopiq bo'ladi. Dependency

Inversion printsipiga ko'ra yuqori darajadagi modullar abstraktsiyalarga bog'lanadi,

konkret implementatsiyalarga emas.

Ikkinchidan, pattern kod sifatini sezilarli darajada yaxshilaydi. Coupling

kamayadi, cohesion oshadi va kod modulyarligi yaxshilanadi. Mijoz kodi konkret

klasslardan izolatsiyalangan bo'lib, bu tizimning moslashuvchanligini oshiradi. Yangi

funksionallik qo'shish mavjud kodni xavf ostiga qo'ymasdan amalga oshiriladi.

Amaliy tatbiq etish jarayonida elektron qurilmalar ishlab chiqarish tizimi uchun

to'liq funksional namuna yaratildi. Bu namuna patternning real loyihalarda qanday

qo'llanilishini namoyish etadi va amaliy dasturchilar uchun foydali bo'ladi. Kod

zamonaviy Python xususiyatlaridan foydalanadi va ishlab chiqarish muhiti uchun

tayyor.

FOYDALANILGAN ADABIYOTLAR

1. Gamma E., Helm R., Johnson R., Vlissides J. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley Professional, 1994. 395 p.

2. Martin R.C. Clean Architecture: A Craftsman's Guide to Software Structure and

Design. Prentice Hall, 2017. 432 p.

3. Fowler M. Refactoring: Improving the Design of Existing Code. 2nd edition.

Addison-Wesley Professional, 2018. 448 p.

4. Bloch J. Effective Java. 3rd edition. Addison-Wesley Professional, 2018. 416 p.

5. Freeman E., Robson E. Head First Design Patterns: Building Extensible and

Maintainable Object-Oriented Software. 2nd edition. O'Reilly Media, 2020. 694 p.

6. Martin R.C. Agile Software Development, Principles, Patterns, and Practices.

Prentice Hall, 2002. 552 p.

7. Richardson C. Microservices Patterns: With Examples in Java. Manning

Publications, 2018. 520 p.

https://journalss.org/

