e L o ISSN:3030-3621
Ta'lim innovatsiyasi va integratsiyasi

OBSERVER PATTERNI: OBUNA BO'LUVCHI VA XABAR BERUVCHI
MODELNI DASTURLASH

Mirsaid Yusupov Abdulaziz o’g’li

Farg ‘ona daviat universiteti Amaliy matematika
va informatika kafedrasi o ‘gituvchisi

E-mail: mirsaidbeky@gmail.com

Surayyo Turg ‘unova Ulug ‘bek qizi

Farg ‘ona daviat universiteti Amaliy matematika
yo ‘nalishi 3-bosqich 23.07-guruh talabasi
E-mail: surayyoturgunovalé@gmail.com

Annotatsiya: Ushbu magola ob'ektga yo'naltirilgan dasturlashdagi asosiy xulg-
atvor patternlaridan biri bo'lgan Observer dizayn patternining keng gamrovli
tadgigotini taqdim etadi. Observer patterni ob'ektlarga boshga ob'ektlarda sodir
bo'layotgan hodisalarni kuzatish va ularga javob berish imkonini beruvchi obuna
mexanizmini amalga oshiradi. Ishda patternning nazariy asoslari, uning arxitektura
xususiyatlari, zamonaviy dasturiy tizimlarda amalga oshirishning amaliy jihatlari
batafsil ko'rib chigiladi. Ushbu patternning afzalliklari va kamchiliklarini tahlil gilish,
uni tagsimlangan tizimlarda, reaktiv dasturlashda va hodisalarga asoslangan
arxitekturalarda go'llash alohida e'tiborga olingan. Tadqigot Observer patternining turli
xil variantlarini, jumladan push va pull modellarini, sinxron va asinxron amalga
oshirishlarni batafsil ko'rib chigishni o'z ichiga oladi. Sanoat ilovalarida ushbu
patterndan foydalanishda miqgyoslilik, samaradorlik va ishonchlilik muammolari ko'rib
chigiladi. Magolada mikroservis arxitekturasi, reaktiv ma'lumot ogimlari va hodisalar
boshqgariladigan tizimlar kontekstida Observer patternini qo'llashning zamonaviy
tendentsiyalari tahlil qilinadi. Dasturiy ta'minotni ishlab chigishning turli
stsenariylarida patternni samarali go'llash bo'yicha tavsiyalar tagdim etilgan.

Kalit so'zlar: dizayn patterni, Observer, xulg-atvor patterni, hodisalarga
asoslangan arxitektura, obuna mexanizmi, reaktiv dasturlash, zaif bog'lanish,
bildirishnomalar, sub'ekt, kuzatuvchi

AHHOTalIl/Iﬂ: I[aHHaSI CTaTbsA IMPCACTABIIICT KOMIIIICKCHOC MCCIICI0BAHUC
natTepHa npoekTupoBanust Observer, KOTOpbI sBISETCA OAHHM W3
®YHﬂaMeHTaHBHBIX IMOBCACHYCCKHUX TIIAaTTCPHOB B O6’bCKTHO-OpI/I€HTI/IpOBaHHOM
nporpammupoBannn. I[larrepn Observer peanusyer MeXaHHM3M ITOAMKMCKH,
MO3BOJISIONINNA 00BEKTaM OTCICKHUBATH U PearupoBaTh Ha COOBITUS, POUCXO/ISIINE B
Ipyrux o0bekTax. B pabore moapoOHO paccMaTpUBAIOTCS TEOPETUYECKHUE OCHOBBI
naTTepHa, ero apXUTEKTYPHbIE OCOOEHHOCTH, MPAKTUUECKHUE ACTIEKTHI pealn3alii B
COBPEMEHHBIX MPOTrpaMMHBIX cucteMax. Ocoboe BHUMaHUE YIENSIETCS aHaIU3y

@ https://journalss.org [251] 59-son_1-to’plam_Dekabr -2025

https://journalss.org/
mailto:surayyoturgunova16@gmail.com

e L o ISSN:3030-3621
Ta'lim innovatsiyasi va integratsiyasi

MMpCUMYIICCTB u HEOO0CTAaTKOB AJaHHOT'O MMaTTCpHA, cro IMPUMCHCHUIO B
pacopeaciiCHHbIX CHCTEMAX, PCAaKTUBHOM [IIPOIrpaMMHUPOBAHHN H COOBITUIHO-
OPUCHTHUPOBAHHLIX aApPXUTCKTYpPaAX. I/ICCJ'IC,ZIOBaHI/Ie BKJIFOYACT I[eTaJ'IBHHﬁ 063013
pa3nuHbIX Bapualui marrepaa Observer, skimouas push u pull mongesnu, cuaxpoHHbIe
YW aCUHXpPOHHBIE peann3auuu. PaccmaTpuBaroTcs MpoOJeMbl MacIITaOMPYEMOCTH,
MMPOU3BOAUTCIBHOCTH M HAJACKHOCTH IIPW HCIOJIb30BAHWKU JJAHHOTO IIaTTCpHA B
IMPOMBIINIJICHHBIX ITPHUJIOKCHUAX. Cratpsa AHAJIMBUPYCT COBPCMCHHLIC TCHACHINH
npumeHeHnss ODServer marrepHa B KOHTEKCTE MHUKPOCEPBUCHOW apXUTEKTYPHI,
PCAKTHUBHBIX IMTOTOKOB JAHHBIX H CO6I>ITI/II‘/’IHO-y1'IpaBJ]HeMBIX CUCTEM. HpeI[CTaBJIeHLI
pekoMeHaanuu 1mo 3¢pOEKTUBHOMY MPUMEHEHHIO NAaTTEpHA B PA3IMUHBIX CIICHAPHUIX
pa3pabOTKH MPOrpaMMHOI0 0OECIICUSHHUS.

KaroueBble cjioBa: martepH mpoektupoBanms, Observer, mopemeHueckuit
MaTTEePH, COOBITUMHO-OPUEHTUPOBAHHAS APXUTEKTypa, MEXaHHU3M IMOJIUCKH,
pPEaKTUBHOE NPOTpaMMUpPOBAHHUE, cJlla0asi CBSI3aHHOCTb, YBEIOMJICHUS, CYOBEKT,
Ha0JIr0aTeIb

Annotation: This article presents a comprehensive study of the Observer design
pattern, which is one of the fundamental behavioral patterns in object-oriented
programming. The Observer pattern implements a subscription mechanism that allows
objects to track and respond to events occurring in other objects. The work thoroughly
examines the theoretical foundations of the pattern, its architectural features, and
practical aspects of implementation in modern software systems. Special attention is
given to analyzing the advantages and disadvantages of this pattern, its application in
distributed systems, reactive programming, and event-driven architectures. The
research includes a detailed review of various variations of the Observer pattern,
including push and pull models, synchronous and asynchronous implementations.
Issues of scalability, performance, and reliability when using this pattern in industrial
applications are examined. The article analyzes current trends in applying the Observer
pattern in the context of microservice architecture, reactive data streams, and event-
driven systems. Recommendations for effective application of the pattern in various
software development scenarios are presented.

Keywords: design pattern, Observer, behavioral pattern, event-driven
architecture, subscription mechanism, reactive programming, loose coupling,
notifications, subject, observer

KIRISH
Zamonaviy dasturiy ta'minot tizimlarini ishlab chigishda ob'ektlar orasidagi
samarali 0'zaro ta'sir mexanizmlarini yaratish muhim vazifalardan biridir. Dasturlash
jarayonida tez-tez shunday vaziyatlar yuzaga keladiki, bir ob'ektning holatidagi
o'zgarishlar boshga bir yoki bir nechta ob'ektlarga ta'sir ko'rsatishi kerak bo'ladi.

@ https://journalss.org [252] 59-son_1-to’plam_Dekabr -2025

https://journalss.org/

e L o ISSN:3030-3621
Ta'lim innovatsiyasi va integratsiyasi

Bunday vaziyatlarda ob'ektlar orasida to'g'ridan-to'g'ri bog'lanish o'rnatish tizimning
moslashuvchanligini pasaytiradi va kelajakda dasturni kengaytirish hamda
o'zgartirishni giyinlashtiradi.

Observer patterni ushbu muammoni hal gilish uchun yaratilgan klassik dizayn
patternlaridan biridir. U birinchi marta "Gang of Four" nomi bilan mashhur bo'lgan
to'rtta muallif tomonidan tagdim etilgan va dasturlash sohasida keng go'llanilgan
patternlardan biriga aylangan. Observer patternining asosiy magsadi ob'ektlar orasida
bir tomonlama bog'lanishni ta'minlash va ularning zaif bog'lanishini saglashdir.

Observer patterni aynigsa foydalanuvchi interfeyslari, real vaqt tizimlari,
hodisalarni gayta ishlash mexanizmlari va ma'lumotlar ogimini boshqgarish tizimlarida
keng qo'llaniladi. Bugungi kunda mikroservis arxitekturalari, reaktiv dasturlash
paradigmalari va hodisalarga asoslangan tizimlarning rivojlanishi bilan Observer
patternining ahamiyati yanada oshib bormoqda.

Ushbu tadgigot ishining magsadi Observer patternining nazariy asoslari,
arxitektura tamoyillari, turli amalga oshirish usullari va zamonaviy dasturlash
amaliyotida qo'llanilishini chuqur o'rganishdir. Tadgigot natijalarida pattern
tanlanganida e'tiborga olish kerak bo'lgan muhim jihatlar, uning afzalliklari va
cheklovlari, shuningdek, turli xil dasturlash tillarida amalga oshirish usullari batafsil
tahlil gilinadi.

Observer patterni xulg-atvor patternlari guruhiga mansub bo'lib, ob'ektlar
orasidagi o'zaro ta'sir mexanizmlarini belgilaydigan patternlardan biridir. Uning asosiy
g'oyasi bir ob'ekt holatidagi o'zgarishlar hagida boshga ob'ektlarni avtomatik ravishda
xabardor gilish mexanizmini yaratishdan iborat.

Observer patternida ikki asosiy rol mavjud. Birinchi rol Subject yoki Publisher
nomi bilan tanilgan va u 0'z holatini kuzatish uchun boshga ob'ektlarga imkon beradi.
Ikkinchi rol Observer yoki Subscriber deb ataladi va u Subject ob'ektidagi o'zgarishlar
hagida bildirishnoma oladi. Subject ob'ekti bir vaqgtning o'zida bir nechta Observer
ob'ektlari tomonidan kuzatilishi mumkin.

Patternning ishlash mexanizmi quyidagicha tashkil etilgan. Observer ob'ektlari
Subject ob'ektiga obuna bo'ladilar. Subject ob'ektida gandaydir muhim o'zgarish yuz
berganida, u barcha obuna bo'lgan Observer ob'ektlariga bildirishnoma yuboradi.
Observer ob'ektlari bu bildirishnomani olgach, o'zlarining ichki holatini yangilaydilar
yoki kerakli harakatlarni bajaradilar.

Observer patternining asosiy afzalligi shundaki, u Subject va Observer ob'ektlari
orasida zaif bog'lanishni ta'minlaydi. Subject ob'ekti 0'ziga gancha va ganday Observer
ob'ektlari obuna bo'lganligini bilishi shart emas. U shunchaki barcha obunachilarga
standart interfeys orqali bildirishnoma yuboradi. Bu esa tizimning moslashuvchanligini
oshiradi va yangi Observer ob'ektlarini go'shish yoki mavjudlarini olib tashlash
jarayonini soddalashtiradi.

@ https://journalss.org [253] 59-son_1-to’plam_Dekabr -2025

https://journalss.org/

e L o ISSN:3030-3621
Ta'lim innovatsiyasi va integratsiyasi

Patternning klassik tuzilishi bir nechta asosiy komponentlardan iborat. Subject
interfeysi yoki mavhum klassi Observer ob'ektlarini ro'yxatdan o'tkazish, o'chirish va
ularga bildirishnoma yuborish uchun metodlarni e'lon giladi. ConcreteSubject klassi
Subject interfeysini amalga oshiradi va o'zining konkret holatini saqglaydi. Observer
interfeysi bildirishnomalarni gabul qilish uchun update metodini e'lon qiladi.
ConcreteObserver klassi Observer interfeysini amalga oshiradi va Subject ob'ektidagi
o'zgarishlarga javob berish uchun konkret mantigni ta'minlaydi.

Observer patternining ikki asosiy modeli mavjud. Push modelida Subject ob'ekti
o'zgarishlar hagida batafsil ma'lumotlarni Observer ob'ektlariga uzatadi. Bu
yondashuvda Observer ob'ektlari minimal harakat qilib, kerakli ma'lumotlarni
to'g'ridan-to'g'ri oladi. Pull modelida esa Subject ob'ekti fagat o'zgarish sodir
bo'lganligi hagida xabar beradi va Observer ob'ektlari o'zlari kerakli ma'lumotlarni
Subject ob'ektidan so'rab oladi. Har bir yondashuvning o'z afzalliklari va kamchiliklari
bor.

Push modeli sodda va tezkor bo'ladi, lekin Observer ob'ektlari kerak bo'Imagan
ma'lumotlarni ham olishi mumkin. Pull modeli esa Observer ob'ektlariga ko'prog
nazorat beradi, lekin go'shimcha so'rovlar tufayli tizimning yuklanishi ortishi mumkin.

Observer patternini amalga oshirish turli xil usullar va yondashuvlarni talab
giladi. Eng oddiy va klassik amalga oshirish usulida Subject klassi Observer
ob'ektlarini saglash uchun ro'yxat yoki to'plamdan foydalanadi. Attach metodi yangi
Observer ob'ektini ushbu ro'yxatga go'shadi, Detach metodi esa ob'ektni ro'yxatdan olib
tashlaydi. Notify metodi esa ro'yxatdagi barcha Observer ob'ektlarining update
metodini chagiradi.

Observer ob'ektlari uchun umumiy interfeys yaratish muhim ahamiyatga ega. Bu
interfeys kamida bitta update metodi bo'lishi kerak. Ba'zi amalga oshirishlarda update
metodiga Subject ob'ektining o'zi parametr sifatida uzatiladi, bu esa Observer ob'ektiga
kerak bo'lsa go'shimcha ma'lumotlar olish imkonini beradi.

Zamonaviy ob'ektga yo'naltirilgan dasturlash tillarida Observer patternini
amalga oshirish uchun turli xil mexanizmlardan foydalanish mumkin. Masalan, ba'zi
tillarda hodisalar va delegatlar mavjud bo'lib, ular Observer patternini yanada oson va
tabiiy tarzda amalga oshirish imkonini beradi.

Observer patternini amalga oshirishda e'tiborga olish kerak bo'lgan muhim
jihatlardan biri xotira boshgaruvidir. Agar Observer ob'ektlari Subject ob'ektidan
obunani bekor gilmasa, xotira oqib ketishi yuz berishi mumkin. Shuning uchun,
Observer ob'ektlari o'z hayot tsiklining oxirida obunani bekor gilish mexanizmini
ta'minlash kerak.

Boshga muhim jihat bildirishnomalar davomida Subject ob'ektining holatini
o'zgartirishdan gochishdir. Agar Observer ob'ektining update metodi Subject ob'ektini
0'zgartirsa, bu cheksiz rekursiyaga yoki noto'g'ri natijalar olishga olib kelishi mumkin.

@ https://journalss.org [254] 59-son_1-to’plam_Dekabr -2025

https://journalss.org/

e L o ISSN:3030-3621
Ta'lim innovatsiyasi va integratsiyasi

Shuning uchun, bildirishnomalar davomida Subject ob'ektining holatini blokirovka
gilish yoki o'zgarishlarni navbatga qo'yish kerak.

Ko'p threadli muhitlarda Observer patternini amalga oshirish qo'shimcha
murakkabliklarni keltirib chigaradi. Bir nechta threadlar bir vagtning o'zida Observer
ob'ektlarini qo'shishi, olib tashlashi yoki bildirishnomalar yuborishi mumkin. Bu esa
sinxronizatsiya mexanizmlarini qgo'llashni talab giladi. Mutexlar, semaforlar yoki
boshqga sinxronizatsiya vositalari yordamida kritik bo'limlarni himoya qilish kerak.

Asinxron Observer patternini amalga oshirish zamonaviy dasturlashda keng
targalgan yondashuvdir. Bu yondashuvda bildirishnomalar asinxron ravishda
yuboriladi va Observer ob'ektlari bildirishnomalarni asinxron tarzda gayta ishlaydi. Bu
tizimning javob berish tezligini oshiradi va bloklanishlardan qochish imkonini beradi.

Observer patterni ko'plab afzalliklarga ega bo'lib, shuning uchun u dasturlash
amaliyotida keng qo'llaniladi. Birinchi va eng muhim afzallik zaif bog'lanishdir.
Observer patterni Subject va Observer ob'ektlari orasida minimal bog'lanishni
ta'minlaydi. Bu esa tizimning turli gismlarini mustaqgil ravishda rivojlantirish va
o'zgartirish imkonini beradi.

Afzallik tizimning moslashuvchanligini oshirishdir. Yangi Observer ob'ektlarini
go'shish yoki mavjudlarini olib tashlash juda oson. Bu esa tizimning xatti-harakatini
dastur ishlab turgan paytda ham o'zgartirish imkonini beradi. Subject ob'ektining
kodini o'zgartirish kerak bo'Imaydi, shunchaki yangi Observer ob'ektini yaratib, uni
ro'yxatdan o'tkazish kifoya giladi.

Afzallik kod gayta ishlatilishini yaxshilashdir. Observer interfeysi bir marta
yaratilgach, turli xil kontekstlarda gayta ishlatilishi mumkin. Shuningdek, bir xil
Observer ob'ekti turli Subject ob'ektlarga obuna bo'lishi mumkin.

Observer patterni ko'plab afzalliklarga ega bo'lsa-da, bir gator kamchiliklari va
cheklovlari ham mavjud. Birinchi kamchilik kutilmagan o'zgarishlar zanjiridir. Bir
Observer ob'ekti bildirishnoma olgach, Subject ob'ektini o'zgartirishi mumkin, bu esa
boshga Observer ob'ektlariga yangi bildirishnomalar yuborilishiga olib keladi. Bu holat
cheksiz yoki juda uzun bildirishnomalar zanjiriga olib kelishi mumkin.

Ikkinchi kamchilik bildirishnomalar ketma-ketligini kafolatlamaslikdir. Subject
ob'ekti bir nechta Observer ob'ektlariga bildirishnoma yuborganida, ularning gaysi
tartibda chagirilishini kafolatlash qiyin. Ba'zi hollarda Observer ob'ektlari o'zaro
bog'lig bo'lishi mumkin va ularni noto'g'ri tartibda chaqgirish xatolarga olib kelishi
mumkin.

Uchinchi kamchilik xotira oqib ketishi xavfidir. Agar Observer ob'ektlari
Subject ob'ektidan obunani to'g'ri bekor gilmasa, ular xotirada qolib ketishi va Subject
ob'ekti tomonidan ushlab turilishi mumkin. Bu esa aynigsa uzoq muddatli dasturlarda
jiddiy muammo bo'lishi mumkin.

@ https://journalss.org [255] 59-son_1-to’plam_Dekabr -2025

https://journalss.org/

e L o ISSN:3030-3621
Ta'lim innovatsiyasi va integratsiyasi

Zamonaviy dasturlashda Observer patterni turli xil sohalarda va
texnologiyalarda keng go'llaniladi. Birinchi va eng keng targalgan go'llanilish sohasi
foydalanuvchi interfeyslarini yaratishdir. Ko'pgina GUI freymvorklari Observer
patterniga asoslanadi. Masalan, model-view arxitekturasida model Subject ob'ekti,
view esa Observer ob'ekti hisoblanadi. Modelda o'zgarish yuz berganida, barcha
bog'langan ko'rinishlar avtomatik ravishda yangilanadi.

Ikkinchi muhim qo'llanilish sohasi hodisalarga asoslangan dasturlashdir.
Zamonaviy dasturlash tillarida hodisalar mexanizmi Observer patternining
implementatsiyasidir. Ob'ektlar hodisalarga obuna bo'lishi va hodisalar sodir
bo'lganida avtomatik ravishda xabardor bo'lishi mumkin.

Uchinchi go'llanilish sohasi reaktiv dasturlashdir. ReactiveX, RxJava, RxJS kabi
kutubxonalar Observer patternini asosiy kontseptsiya sifatida ishlatadi. Bu
kutubxonalarda ma'lumotlar ogimlari Observer patterni orgali boshgariladi va turli xil
operatorlar yordamida transformatsiya gilinadi.

To'rtinchi go'llanilish sohasi mikroservis arxitekturalaridir. Zamonaviy
tagsimlangan tizimlarda turli xil servislar bir-biridan hodisalar orgali xabardor bo'ladi.
Message brokerlar va event bus tizimlar Observer patternining tagsimlangan
versiyasini amalga oshiradi. Kafka, RabbitMQ, Redis Pub/Sub kabi texnologiyalar
ushbu paradigmani qo'llab-quvvatlaydi.

Reaktiv dasturlash paradigmasi Observer patternini o0'zining asosiy prinsipi
sifatida qabul gilgan. Reaktiv dasturlashda ma'lumotlar ogimlari va ularning
o'zgarishlari markaziy o'rin tutadi. Observable ob'ektlar ma'lumotlar manbai bo'lib
xizmat giladi va Observer ob'ektlar bu ma'lumotlarni gabul giladi va gayta ishlaydi.

Reaktiv kutubxonalar oddiy Observer patternini kengaytiradi va ko'plab
go'shimcha imkoniyatlar go'shadi. Masalan, RxJS kutubxonasida yuzlab operator
mavjud bo'lib, ular ma'lumotlar ogimlarini transformatsiya qilish, filtrlash,
kombinatsiya qilish imkonini beradi. Map, filter, reduce, merge, concat kabi
operatorlar ma'lumotlar ogimlari bilan ishlashni juda kuchli va ifodalovchi giladi.

Reaktiv dasturlashda hot va cold Observable tushunchalari muhim ahamiyatga
ega. Cold Observable har bir yangi Observer uchun alohida ma'lumotlar ogimini
yaratadi. Hot Observable esa barcha Observer ob'ektlar uchun umumiy ma'lumotlar
ogimini tagdim etadi. Bu farq tizimning samaradorligi va xatti-harakatiga katta ta'sir
ko'rsatadi.

Backpressure reaktiv tizimlarda muhim muammolardan biridir. Agar
ma'lumotlar manbai juda tez ma'lumot ishlab chigarsa va Observer ob'ektlar ularni
gayta ishlashga ulgurmasa, tizim haddan tashgari yuklangani bo'ladi. Reaktiv
kutubxonalar backpressure muammosini hal gilish uchun turli strategiyalarni tagdim
etadi.

@ https://journalss.org [256] 59-son_1-to’plam_Dekabr -2025

https://journalss.org/

e L o ISSN:3030-3621
Ta'lim innovatsiyasi va integratsiyasi

Reaktiv dasturlashda xatolarni boshgarish ham Observer patterni orgali amalga
oshiriladi. Xatolar oddiy ma'lumotlar kabi ogim orgali uzatiladi va Observer ob'ektlar
ularni maxsus error handler metodlari orgali gayta ishlaydi. Bu xatolarni
markazlashtirilgan va izchil tarzda boshgarish imkonini beradi.

Scheduler tushunchasi reaktiv dasturlashda Observer patternining Xatti-
harakatini boshqgarish uchun ishlatiladi. Scheduler ma'lumotlar gaysi thread yoki
execution contextda gayta ishlanishini belgilaydi. Bu ko'p threadli va asinxron
dasturlashda juda muhim.

Mikroservis arxitekturasida Observer patterni hodisalarga asoslangan mulogot
mexanizmini yaratishda asosiy rol o'ynaydi. Monolitik arxitekturadan fargli ravishda,
mikroservislarda servislar bir-biri bilan bevosita mulogot gilmaydi, balki hodisalar
orgali o'zaro ta'sir giladi.

Event-driven arxitekturada har bir mikroservis o0'zining sohasida sodir
bo'layotgan muhim hodisalar hagida boshga servislarga xabar beradi. Masalan,
buyurtmalar servisi yangi buyurtma yaratilgani hagida hodisa chigaradi. Bu hodisaga
inventar servisi, to'lov servisi, yetkazib berish servisi va boshgalar obuna bo'lishi
mumekin.

Message broker tizimlar mikroservislar orasida Observer patternini amalga
oshirish uchun ishlatiladi. Apache Kafka, RabbitMQ, Amazon SNS/SQS kabi tizimlar
hodisalarni saqglash, uzatish va targatish vazifasini bajaradi. Bu tizimlar yuqori
samaradorlik, ishonchlilik va migyoslanishni ta'minlaydi.

Event sourcing arxitektura patterni Observer patterni bilan yaqin bog'liq. Bu
yondashuvda tizimning holatini to'g'ridan-to'g'ri saqlamaydi, balki barcha hodisalarni
ketma-ketlikda saglaydi. Tizimning joriy holatini olish uchun barcha hodisalarni gayta
o'ynatish kerak. Bu yondashuv audit trail, debugging va vagt bo'ylab holatni gayta
tiklash kabi imkoniyatlarni beradi.

CQRS patterni ham Observer patterni bilan birgalikda ishlatiladi. Command
modelda yuz bergan o'zgarishlar hodisalar sifatida query modelga uzatiladi. Bu read va
write operatsiyalarini ajratish va ularni mustaqil migyoslash imkonini beradi.

Saga patterni tagsimlangan transaksiyalarni boshgarish uchun Observer
patternidan foydalanadi. Har bir mikroservis 0'z lokalaviy transaksiyasini bajaradi va
natijasi hagida hodisa chigaradi. Boshga mikroservislar bu hodisalarga asoslanib
o'zlarining harakatlarini amalga oshiradi yoki kompensatsiya giladi.

Eventual consistency tushunchasi mikroservislarda Observer patterni bilan
chambarchas bog'lig. Hodisalar targalishi vaqt talab giladi va turli xil servislar
ma'lumotlarining izchiligi darhol emas, balki vagt o'tishi bilan ta'minlanadi. Bu
tagsimlangan tizimlar uchun normal va gabul gilinadigan xatti-harakatdir.

@ https://journalss.org [257] 59-son_1-to’plam_Dekabr -2025

https://journalss.org/

e L o ISSN:3030-3621
Ta'lim innovatsiyasi va integratsiyasi

Real vaqt tizimlarida Observer patterni ma'lumotlarning darhol uzatilishi va
gayta ishlanishini ta'minlaydi. Moliyaviy bozorlar, monitoring tizimlari, onlayn
o'yinlar kabi ilovalar real vaqt ma'lumotlar ogimlariga bog'lig.

WebSocket texnologiyasi veb ilovalar uchun real vagt mulogotni ta'minlaydi va
Observer patternining asoslarini amalga oshiradi. Server tomonda sodir bo'lgan
hodisalar darhol barcha ulangan klientlarga uzatiladi. Bu ikki tomonlama full-duplex
mulogot kanalini yaratadi.

Server-Sent Events texnologiyasi serverdan klientga bir tomonlama real vaqt
ma'lumotlar ogimini ta'minlaydi. Bu oddiy HTTP ustida qurilgan va Observer
patternining soddalashtirilgan versiyasini amalga oshiradi.

Real vaqt dashboard va monitoring tizimlari Observer patterniga asoslanadi.
Metrikalar, loglar va hodisalar doimiy ravishda to'planadi va barcha ulangan
dashboardlarga uzatiladi. Grafana, Kibana, Datadog kabi tizimlar ushbu mexanizmdan
foydalanadi.

Collaborative editing tizimlarida bir nechta foydalanuvchi bir vagtning o'zida bir
xil hujjat ustida ishlashi mumkin. Har bir foydalanuvchining o'zgarishlari darhol
boshqga barcha foydalanuvchilarga uzatiladi. Google Docs, Figma, Notion kabi ilovalar
ushbu yondashuvdan foydalanadi.

Live chat tizimlari Observer patternining klassik qo'llanilishidir.
Foydalanuvchilar xonaga obuna bo'ladi va xonada sodir bo'layotgan barcha xabarlar
hagida darhol xabardor bo'ladi. Slack, Discord, Telegram kabi platformalar ushbu
mexanizmni go'llaydi.

Real vaqt notification tizimlari foydalanuvchilarga muhim hodisalar hagida
darhol xabar beradi. Push notification, email, SMS va boshga kanallar orgali
bildirishnomalar uzatiladi. Bu tizimlar ko'pincha prioritetlar, filtrlash va
personalizatsiya mexanizmlarini o'z ichiga oladi.

Har bir dasturlash tili Observer patternini o'ziga xos usulda amalga oshirish
imkoniyatlarini tagdim etadi. Java tilida Observer patterni uchun maxsus interfeys va
Klasslar mavjud edi, lekin ular deprecated deb belgilandi. Zamonaviy Java dasturlarida
PropertyChangeL.istener yoki JavaFX Observable APl dan foydalaniladi.

Python tilida Observer patternini amalga oshirish uchun turli xil kutubxonalar
mavjud. PyPubSub kutubxonasi publish-subscribe modelini tagdim etadi. RxPY
kutubxonasi esa reaktiv dasturlash uchun to'lig funksionallikni beradi. Python signals
va slots mexanizmi ham Observer patternining bir turi hisoblanadi.

JavaScript va TypeScript tillari hodisalar mexanizmini 0'z ichiga oladi.
EventEmitter klassi Node.js muhitida Observer patternini amalga oshirish uchun
standart vosita hisoblanadi. Brauzerda esa DOM hodisalari va CustomEvent API dan
foydalaniladi. RxJS kutubxonasi JavaScript uchun eng mashhur reaktiv dasturlash
kutubxonasidir.

@ https://journalss.org [258] 59-son_1-to’plam_Dekabr -2025

https://journalss.org/

e L o ISSN:3030-3621
Ta'lim innovatsiyasi va integratsiyasi

C# tilida event va delegate mexanizmlari Observer patternini tabiiy tarzda
go'llab-quvvatlaydi. 10bservable va IObserver interfeyslari ham mavjud bo'lib, ular
LINQ to Events funksionalligini ta'minlaydi. Reactive Extensions for .NET
kutubxonasi murakkab reaktiv stsenariylar uchun ishlatiladi.

Swift tilida NotificationCenter va Combine framework Observer patternini
amalga oshirish uchun ishlatiladi. Combine Apple ning reaktiv dasturlash kutubxonasi
bo'lib, 10S va macOS ilovalarida keng qo'llaniladi.

Kotlin tilida Flow API reaktiv ogimlar uchun ishlatiladi. LiveData va StateFlow
Android ilovalarida state management uchun Observer patternini qo'llaydi. Kotlin
Coroutines bilan integratsiya qilingan bu mexanizmlar zamonaviy Android
dasturlashda standart hisoblanadi.

Go tilida Observer patternini amalga oshirish uchun channels va goroutines dan
foydalaniladi. Go ning konkurentlik modeli Observer patternini juda samarali tarzda
amalga oshirish imkonini beradi.

Rust tilida Observer patternini amalga oshirish ownership va borrowing
goidalari tufayli go'shimcha murakkabliklar tug'diradi. Lekin Arc va Weak pointerlar
yordamida xavfsiz implementatsiya yaratish mumkin. Tokio kutubxonasi asinxron
Observer patternini go'llab-quvvatlaydi.

XULOSA

Observer patterni ob'ektga yo'naltirilgan dasturlashning eng muhim va keng
targalgan patternlaridan biri hisoblanadi. Uning asosiy maqgsadi ob'ektlar orasida zaif
bog'lanishni ta'minlash va bir ob'ektdagi o'zgarishlar hagida boshga ob'ektlarni
avtomatik ravishda xabardor gilish mexanizmini yaratishdir.

Ushbu tadgiqot ishida Observer patternining nazariy asoslari, arxitektura
tamoyillari, amalga oshirish usullari va zamonaviy dasturlashdagi go'llanilishi batafsil
ko'rib chiqildi. Pattern foydalanuvchi interfeyslari, reaktiv dasturlash, mikroservis
arxitekturalari, real vaqt tizimlari va ko'plab boshga sohalarda keng qo'llanilishi
aniglandi.

Observer patternining asosiy afzalliklari zaif bog'lanish, tizimning
moslashuvchanligini oshirish, kod gayta ishlatilishi, modullik va bir nechta ob'ektlarni
sinxronlash imkoniyatidir. Biroq, pattern kutilmagan o'zgarishlar zanjiri, xotira oqib
ketishi, murakkablik oshishi va samaradorlik muammolari kabi kamchiliklarga ham
ega.

Foydalanilgan Adabiyotlar
1. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, 1994. 395 p.
2. Freeman E, Robson E, Bates B, Sierra K. Head First Design Patterns: Building
Extensible and Maintainable Object-Oriented Software. O'Reilly Media, 2020.
694 p.

@ https://journalss.org [259] 59-son_1-to’plam_Dekabr -2025

https://journalss.org/

v L o ISSN:3030-3621
------------------- Ta'lim innovatsiyasi va integratsiyasi e ———————

3. Fowler M. Patterns of Enterprise Application Architecture. Addison-Wesley
Professional, 2002. 560 p.

4. Vernon V. Implementing Domain-Driven Design. Addison-Wesley
Professional, 2013. 656 p.

5. Richardson C. Microservices Patterns: With Examples in Java. Manning
Publications, 2018. 520 p.

6. Kleppmann M. Designing Data-Intensive Applications: The Big Ideas Behind
Reliable, Scalable, and Maintainable Systems. O'Reilly Media, 2017. 616 p.

7. Nygard M. Release It! Design and Deploy Production-Ready Software.
Pragmatic Bookshelf, 2018. 378 p.

8. Vernon V. Reactive Messaging Patterns with the Actor Model: Applications and
Integration in Scala and Akka. Addison-Wesley Professional, 2015. 512 p.

9. Meijer E. Your Mouse is a Database. Communications of the ACM. 2012. Vol.
55. No. 5. P. 66-73.

@ https://journalss.org [260] 59-son_1-to’plam_Dekabr -2025

https://journalss.org/

