
Ta'lim innovatsiyasi va integratsiyasi

 https://journalss.org 59-son_1-to’plam_Dekabr -2025

251

ISSN:3030-3621

OBSERVER PATTERNI: OBUNA BO'LUVCHI VA XABAR BERUVCHI

MODELNI DASTURLASH

Mirsaid Yusupov Abdulaziz o’g’li

Farg‘ona davlat universiteti Amaliy matematika

va informatika kafedrasi o’qituvchisi

E-mail: mirsaidbeky@gmail.com

Surayyo Turgʻunova Ulugʻbek qizi

Farg‘ona davlat universiteti Amaliy matematika

yoʻnalishi 3-bosqich 23.07-guruh talabasi

E-mail: surayyoturgunova16@gmail.com

Annotatsiya: Ushbu maqola ob'ektga yo'naltirilgan dasturlashdagi asosiy xulq-

atvor patternlaridan biri bo'lgan Observer dizayn patternining keng qamrovli

tadqiqotini taqdim etadi. Observer patterni ob'ektlarga boshqa ob'ektlarda sodir

bo'layotgan hodisalarni kuzatish va ularga javob berish imkonini beruvchi obuna

mexanizmini amalga oshiradi. Ishda patternning nazariy asoslari, uning arxitektura

xususiyatlari, zamonaviy dasturiy tizimlarda amalga oshirishning amaliy jihatlari

batafsil ko'rib chiqiladi. Ushbu patternning afzalliklari va kamchiliklarini tahlil qilish,

uni taqsimlangan tizimlarda, reaktiv dasturlashda va hodisalarga asoslangan

arxitekturalarda qo'llash alohida e'tiborga olingan. Tadqiqot Observer patternining turli

xil variantlarini, jumladan push va pull modellarini, sinxron va asinxron amalga

oshirishlarni batafsil ko'rib chiqishni o'z ichiga oladi. Sanoat ilovalarida ushbu

patterndan foydalanishda miqyoslilik, samaradorlik va ishonchlilik muammolari ko'rib

chiqiladi. Maqolada mikroservis arxitekturasi, reaktiv ma'lumot oqimlari va hodisalar

boshqariladigan tizimlar kontekstida Observer patternini qo'llashning zamonaviy

tendentsiyalari tahlil qilinadi. Dasturiy ta'minotni ishlab chiqishning turli

stsenariylarida patternni samarali qo'llash bo'yicha tavsiyalar taqdim etilgan.

Kalit so'zlar: dizayn patterni, Observer, xulq-atvor patterni, hodisalarga

asoslangan arxitektura, obuna mexanizmi, reaktiv dasturlash, zaif bog'lanish,

bildirishnomalar, sub'ekt, kuzatuvchi

Аннотация: Данная статья представляет комплексное исследование

паттерна проектирования Observer, который является одним из

фундаментальных поведенческих паттернов в объектно-ориентированном

программировании. Паттерн Observer реализует механизм подписки,

позволяющий объектам отслеживать и реагировать на события, происходящие в

других объектах. В работе подробно рассматриваются теоретические основы

паттерна, его архитектурные особенности, практические аспекты реализации в

современных программных системах. Особое внимание уделяется анализу

https://journalss.org/
mailto:surayyoturgunova16@gmail.com

Ta'lim innovatsiyasi va integratsiyasi

 https://journalss.org 59-son_1-to’plam_Dekabr -2025

252

ISSN:3030-3621

преимуществ и недостатков данного паттерна, его применению в

распределенных системах, реактивном программировании и событийно-

ориентированных архитектурах. Исследование включает детальный обзор

различных вариаций паттерна Observer, включая push и pull модели, синхронные

и асинхронные реализации. Рассматриваются проблемы масштабируемости,

производительности и надежности при использовании данного паттерна в

промышленных приложениях. Статья анализирует современные тенденции

применения Observer паттерна в контексте микросервисной архитектуры,

реактивных потоков данных и событийно-управляемых систем. Представлены

рекомендации по эффективному применению паттерна в различных сценариях

разработки программного обеспечения.

Ключевые слова: паттерн проектирования, Observer, поведенческий

паттерн, событийно-ориентированная архитектура, механизм подписки,

реактивное программирование, слабая связанность, уведомления, субъект,

наблюдатель

Annotation: This article presents a comprehensive study of the Observer design

pattern, which is one of the fundamental behavioral patterns in object-oriented

programming. The Observer pattern implements a subscription mechanism that allows

objects to track and respond to events occurring in other objects. The work thoroughly

examines the theoretical foundations of the pattern, its architectural features, and

practical aspects of implementation in modern software systems. Special attention is

given to analyzing the advantages and disadvantages of this pattern, its application in

distributed systems, reactive programming, and event-driven architectures. The

research includes a detailed review of various variations of the Observer pattern,

including push and pull models, synchronous and asynchronous implementations.

Issues of scalability, performance, and reliability when using this pattern in industrial

applications are examined. The article analyzes current trends in applying the Observer

pattern in the context of microservice architecture, reactive data streams, and event-

driven systems. Recommendations for effective application of the pattern in various

software development scenarios are presented.

Keywords: design pattern, Observer, behavioral pattern, event-driven

architecture, subscription mechanism, reactive programming, loose coupling,

notifications, subject, observer

KIRISH

Zamonaviy dasturiy ta'minot tizimlarini ishlab chiqishda ob'ektlar orasidagi

samarali o'zaro ta'sir mexanizmlarini yaratish muhim vazifalardan biridir. Dasturlash

jarayonida tez-tez shunday vaziyatlar yuzaga keladiki, bir ob'ektning holatidagi

o'zgarishlar boshqa bir yoki bir nechta ob'ektlarga ta'sir ko'rsatishi kerak bo'ladi.

https://journalss.org/

Ta'lim innovatsiyasi va integratsiyasi

 https://journalss.org 59-son_1-to’plam_Dekabr -2025

253

ISSN:3030-3621

Bunday vaziyatlarda ob'ektlar orasida to'g'ridan-to'g'ri bog'lanish o'rnatish tizimning

moslashuvchanligini pasaytiradi va kelajakda dasturni kengaytirish hamda

o'zgartirishni qiyinlashtiradi.

Observer patterni ushbu muammoni hal qilish uchun yaratilgan klassik dizayn

patternlaridan biridir. U birinchi marta "Gang of Four" nomi bilan mashhur bo'lgan

to'rtta muallif tomonidan taqdim etilgan va dasturlash sohasida keng qo'llanilgan

patternlardan biriga aylangan. Observer patternining asosiy maqsadi ob'ektlar orasida

bir tomonlama bog'lanishni ta'minlash va ularning zaif bog'lanishini saqlashdir.

Observer patterni ayniqsa foydalanuvchi interfeyslari, real vaqt tizimlari,

hodisalarni qayta ishlash mexanizmlari va ma'lumotlar oqimini boshqarish tizimlarida

keng qo'llaniladi. Bugungi kunda mikroservis arxitekturalari, reaktiv dasturlash

paradigmalari va hodisalarga asoslangan tizimlarning rivojlanishi bilan Observer

patternining ahamiyati yanada oshib bormoqda.

Ushbu tadqiqot ishining maqsadi Observer patternining nazariy asoslari,

arxitektura tamoyillari, turli amalga oshirish usullari va zamonaviy dasturlash

amaliyotida qo'llanilishini chuqur o'rganishdir. Tadqiqot natijalarida pattern

tanlanganida e'tiborga olish kerak bo'lgan muhim jihatlar, uning afzalliklari va

cheklovlari, shuningdek, turli xil dasturlash tillarida amalga oshirish usullari batafsil

tahlil qilinadi.

Observer patterni xulq-atvor patternlari guruhiga mansub bo'lib, ob'ektlar

orasidagi o'zaro ta'sir mexanizmlarini belgilaydigan patternlardan biridir. Uning asosiy

g'oyasi bir ob'ekt holatidagi o'zgarishlar haqida boshqa ob'ektlarni avtomatik ravishda

xabardor qilish mexanizmini yaratishdan iborat.

Observer patternida ikki asosiy rol mavjud. Birinchi rol Subject yoki Publisher

nomi bilan tanilgan va u o'z holatini kuzatish uchun boshqa ob'ektlarga imkon beradi.

Ikkinchi rol Observer yoki Subscriber deb ataladi va u Subject ob'ektidagi o'zgarishlar

haqida bildirishnoma oladi. Subject ob'ekti bir vaqtning o'zida bir nechta Observer

ob'ektlari tomonidan kuzatilishi mumkin.

Patternning ishlash mexanizmi quyidagicha tashkil etilgan. Observer ob'ektlari

Subject ob'ektiga obuna bo'ladilar. Subject ob'ektida qandaydir muhim o'zgarish yuz

berganida, u barcha obuna bo'lgan Observer ob'ektlariga bildirishnoma yuboradi.

Observer ob'ektlari bu bildirishnomani olgach, o'zlarining ichki holatini yangilaydilar

yoki kerakli harakatlarni bajaradilar.

Observer patternining asosiy afzalligi shundaki, u Subject va Observer ob'ektlari

orasida zaif bog'lanishni ta'minlaydi. Subject ob'ekti o'ziga qancha va qanday Observer

ob'ektlari obuna bo'lganligini bilishi shart emas. U shunchaki barcha obunachilarga

standart interfeys orqali bildirishnoma yuboradi. Bu esa tizimning moslashuvchanligini

oshiradi va yangi Observer ob'ektlarini qo'shish yoki mavjudlarini olib tashlash

jarayonini soddalashtiradi.

https://journalss.org/

Ta'lim innovatsiyasi va integratsiyasi

 https://journalss.org 59-son_1-to’plam_Dekabr -2025

254

ISSN:3030-3621

Patternning klassik tuzilishi bir nechta asosiy komponentlardan iborat. Subject

interfeysi yoki mavhum klassi Observer ob'ektlarini ro'yxatdan o'tkazish, o'chirish va

ularga bildirishnoma yuborish uchun metodlarni e'lon qiladi. ConcreteSubject klassi

Subject interfeysini amalga oshiradi va o'zining konkret holatini saqlaydi. Observer

interfeysi bildirishnomalarni qabul qilish uchun update metodini e'lon qiladi.

ConcreteObserver klassi Observer interfeysini amalga oshiradi va Subject ob'ektidagi

o'zgarishlarga javob berish uchun konkret mantiqni ta'minlaydi.

Observer patternining ikki asosiy modeli mavjud. Push modelida Subject ob'ekti

o'zgarishlar haqida batafsil ma'lumotlarni Observer ob'ektlariga uzatadi. Bu

yondashuvda Observer ob'ektlari minimal harakat qilib, kerakli ma'lumotlarni

to'g'ridan-to'g'ri oladi. Pull modelida esa Subject ob'ekti faqat o'zgarish sodir

bo'lganligi haqida xabar beradi va Observer ob'ektlari o'zlari kerakli ma'lumotlarni

Subject ob'ektidan so'rab oladi. Har bir yondashuvning o'z afzalliklari va kamchiliklari

bor.

Push modeli sodda va tezkor bo'ladi, lekin Observer ob'ektlari kerak bo'lmagan

ma'lumotlarni ham olishi mumkin. Pull modeli esa Observer ob'ektlariga ko'proq

nazorat beradi, lekin qo'shimcha so'rovlar tufayli tizimning yuklanishi ortishi mumkin.

Observer patternini amalga oshirish turli xil usullar va yondashuvlarni talab

qiladi. Eng oddiy va klassik amalga oshirish usulida Subject klassi Observer

ob'ektlarini saqlash uchun ro'yxat yoki to'plamdan foydalanadi. Attach metodi yangi

Observer ob'ektini ushbu ro'yxatga qo'shadi, Detach metodi esa ob'ektni ro'yxatdan olib

tashlaydi. Notify metodi esa ro'yxatdagi barcha Observer ob'ektlarining update

metodini chaqiradi.

Observer ob'ektlari uchun umumiy interfeys yaratish muhim ahamiyatga ega. Bu

interfeys kamida bitta update metodi bo'lishi kerak. Ba'zi amalga oshirishlarda update

metodiga Subject ob'ektining o'zi parametr sifatida uzatiladi, bu esa Observer ob'ektiga

kerak bo'lsa qo'shimcha ma'lumotlar olish imkonini beradi.

Zamonaviy ob'ektga yo'naltirilgan dasturlash tillarida Observer patternini

amalga oshirish uchun turli xil mexanizmlardan foydalanish mumkin. Masalan, ba'zi

tillarda hodisalar va delegatlar mavjud bo'lib, ular Observer patternini yanada oson va

tabiiy tarzda amalga oshirish imkonini beradi.

Observer patternini amalga oshirishda e'tiborga olish kerak bo'lgan muhim

jihatlardan biri xotira boshqaruvidir. Agar Observer ob'ektlari Subject ob'ektidan

obunani bekor qilmasa, xotira oqib ketishi yuz berishi mumkin. Shuning uchun,

Observer ob'ektlari o'z hayot tsiklining oxirida obunani bekor qilish mexanizmini

ta'minlash kerak.

Boshqa muhim jihat bildirishnomalar davomida Subject ob'ektining holatini

o'zgartirishdan qochishdir. Agar Observer ob'ektining update metodi Subject ob'ektini

o'zgartirsa, bu cheksiz rekursiyaga yoki noto'g'ri natijalar olishga olib kelishi mumkin.

https://journalss.org/

Ta'lim innovatsiyasi va integratsiyasi

 https://journalss.org 59-son_1-to’plam_Dekabr -2025

255

ISSN:3030-3621

Shuning uchun, bildirishnomalar davomida Subject ob'ektining holatini blokirovka

qilish yoki o'zgarishlarni navbatga qo'yish kerak.

Ko'p threadli muhitlarda Observer patternini amalga oshirish qo'shimcha

murakkabliklarni keltirib chiqaradi. Bir nechta threadlar bir vaqtning o'zida Observer

ob'ektlarini qo'shishi, olib tashlashi yoki bildirishnomalar yuborishi mumkin. Bu esa

sinxronizatsiya mexanizmlarini qo'llashni talab qiladi. Mutexlar, semaforlar yoki

boshqa sinxronizatsiya vositalari yordamida kritik bo'limlarni himoya qilish kerak.

Asinxron Observer patternini amalga oshirish zamonaviy dasturlashda keng

tarqalgan yondashuvdir. Bu yondashuvda bildirishnomalar asinxron ravishda

yuboriladi va Observer ob'ektlari bildirishnomalarni asinxron tarzda qayta ishlaydi. Bu

tizimning javob berish tezligini oshiradi va bloklanishlardan qochish imkonini beradi.

Observer patterni ko'plab afzalliklarga ega bo'lib, shuning uchun u dasturlash

amaliyotida keng qo'llaniladi. Birinchi va eng muhim afzallik zaif bog'lanishdir.

Observer patterni Subject va Observer ob'ektlari orasida minimal bog'lanishni

ta'minlaydi. Bu esa tizimning turli qismlarini mustaqil ravishda rivojlantirish va

o'zgartirish imkonini beradi.

Afzallik tizimning moslashuvchanligini oshirishdir. Yangi Observer ob'ektlarini

qo'shish yoki mavjudlarini olib tashlash juda oson. Bu esa tizimning xatti-harakatini

dastur ishlab turgan paytda ham o'zgartirish imkonini beradi. Subject ob'ektining

kodini o'zgartirish kerak bo'lmaydi, shunchaki yangi Observer ob'ektini yaratib, uni

ro'yxatdan o'tkazish kifoya qiladi.

Afzallik kod qayta ishlatilishini yaxshilashdir. Observer interfeysi bir marta

yaratilgach, turli xil kontekstlarda qayta ishlatilishi mumkin. Shuningdek, bir xil

Observer ob'ekti turli Subject ob'ektlarga obuna bo'lishi mumkin.

Observer patterni ko'plab afzalliklarga ega bo'lsa-da, bir qator kamchiliklari va

cheklovlari ham mavjud. Birinchi kamchilik kutilmagan o'zgarishlar zanjiridir. Bir

Observer ob'ekti bildirishnoma olgach, Subject ob'ektini o'zgartirishi mumkin, bu esa

boshqa Observer ob'ektlariga yangi bildirishnomalar yuborilishiga olib keladi. Bu holat

cheksiz yoki juda uzun bildirishnomalar zanjiriga olib kelishi mumkin.

Ikkinchi kamchilik bildirishnomalar ketma-ketligini kafolatlamaslikdir. Subject

ob'ekti bir nechta Observer ob'ektlariga bildirishnoma yuborganida, ularning qaysi

tartibda chaqirilishini kafolatlash qiyin. Ba'zi hollarda Observer ob'ektlari o'zaro

bog'liq bo'lishi mumkin va ularni noto'g'ri tartibda chaqirish xatolarga olib kelishi

mumkin.

Uchinchi kamchilik xotira oqib ketishi xavfidir. Agar Observer ob'ektlari

Subject ob'ektidan obunani to'g'ri bekor qilmasa, ular xotirada qolib ketishi va Subject

ob'ekti tomonidan ushlab turilishi mumkin. Bu esa ayniqsa uzoq muddatli dasturlarda

jiddiy muammo bo'lishi mumkin.

https://journalss.org/

Ta'lim innovatsiyasi va integratsiyasi

 https://journalss.org 59-son_1-to’plam_Dekabr -2025

256

ISSN:3030-3621

Zamonaviy dasturlashda Observer patterni turli xil sohalarda va

texnologiyalarda keng qo'llaniladi. Birinchi va eng keng tarqalgan qo'llanilish sohasi

foydalanuvchi interfeyslarini yaratishdir. Ko'pgina GUI freymvorklari Observer

patterniga asoslanadi. Masalan, model-view arxitekturasida model Subject ob'ekti,

view esa Observer ob'ekti hisoblanadi. Modelda o'zgarish yuz berganida, barcha

bog'langan ko'rinishlar avtomatik ravishda yangilanadi.

Ikkinchi muhim qo'llanilish sohasi hodisalarga asoslangan dasturlashdir.

Zamonaviy dasturlash tillarida hodisalar mexanizmi Observer patternining

implementatsiyasidir. Ob'ektlar hodisalarga obuna bo'lishi va hodisalar sodir

bo'lganida avtomatik ravishda xabardor bo'lishi mumkin.

Uchinchi qo'llanilish sohasi reaktiv dasturlashdir. ReactiveX, RxJava, RxJS kabi

kutubxonalar Observer patternini asosiy kontseptsiya sifatida ishlatadi. Bu

kutubxonalarda ma'lumotlar oqimlari Observer patterni orqali boshqariladi va turli xil

operatorlar yordamida transformatsiya qilinadi.

To'rtinchi qo'llanilish sohasi mikroservis arxitekturalaridir. Zamonaviy

taqsimlangan tizimlarda turli xil servislar bir-biridan hodisalar orqali xabardor bo'ladi.

Message brokerlar va event bus tizimlar Observer patternining taqsimlangan

versiyasini amalga oshiradi. Kafka, RabbitMQ, Redis Pub/Sub kabi texnologiyalar

ushbu paradigmani qo'llab-quvvatlaydi.

Reaktiv dasturlash paradigmasi Observer patternini o'zining asosiy prinsipi

sifatida qabul qilgan. Reaktiv dasturlashda ma'lumotlar oqimlari va ularning

o'zgarishlari markaziy o'rin tutadi. Observable ob'ektlar ma'lumotlar manbai bo'lib

xizmat qiladi va Observer ob'ektlar bu ma'lumotlarni qabul qiladi va qayta ishlaydi.

Reaktiv kutubxonalar oddiy Observer patternini kengaytiradi va ko'plab

qo'shimcha imkoniyatlar qo'shadi. Masalan, RxJS kutubxonasida yuzlab operator

mavjud bo'lib, ular ma'lumotlar oqimlarini transformatsiya qilish, filtrlash,

kombinatsiya qilish imkonini beradi. Map, filter, reduce, merge, concat kabi

operatorlar ma'lumotlar oqimlari bilan ishlashni juda kuchli va ifodalovchi qiladi.

Reaktiv dasturlashda hot va cold Observable tushunchalari muhim ahamiyatga

ega. Cold Observable har bir yangi Observer uchun alohida ma'lumotlar oqimini

yaratadi. Hot Observable esa barcha Observer ob'ektlar uchun umumiy ma'lumotlar

oqimini taqdim etadi. Bu farq tizimning samaradorligi va xatti-harakatiga katta ta'sir

ko'rsatadi.

Backpressure reaktiv tizimlarda muhim muammolardan biridir. Agar

ma'lumotlar manbai juda tez ma'lumot ishlab chiqarsa va Observer ob'ektlar ularni

qayta ishlashga ulgurmasa, tizim haddan tashqari yuklangani bo'ladi. Reaktiv

kutubxonalar backpressure muammosini hal qilish uchun turli strategiyalarni taqdim

etadi.

https://journalss.org/

Ta'lim innovatsiyasi va integratsiyasi

 https://journalss.org 59-son_1-to’plam_Dekabr -2025

257

ISSN:3030-3621

Reaktiv dasturlashda xatolarni boshqarish ham Observer patterni orqali amalga

oshiriladi. Xatolar oddiy ma'lumotlar kabi oqim orqali uzatiladi va Observer ob'ektlar

ularni maxsus error handler metodlari orqali qayta ishlaydi. Bu xatolarni

markazlashtirilgan va izchil tarzda boshqarish imkonini beradi.

Scheduler tushunchasi reaktiv dasturlashda Observer patternining xatti-

harakatini boshqarish uchun ishlatiladi. Scheduler ma'lumotlar qaysi thread yoki

execution contextda qayta ishlanishini belgilaydi. Bu ko'p threadli va asinxron

dasturlashda juda muhim.

Mikroservis arxitekturasida Observer patterni hodisalarga asoslangan muloqot

mexanizmini yaratishda asosiy rol o'ynaydi. Monolitik arxitekturadan farqli ravishda,

mikroservislarda servislar bir-biri bilan bevosita muloqot qilmaydi, balki hodisalar

orqali o'zaro ta'sir qiladi.

Event-driven arxitekturada har bir mikroservis o'zining sohasida sodir

bo'layotgan muhim hodisalar haqida boshqa servislarga xabar beradi. Masalan,

buyurtmalar servisi yangi buyurtma yaratilgani haqida hodisa chiqaradi. Bu hodisaga

inventar servisi, to'lov servisi, yetkazib berish servisi va boshqalar obuna bo'lishi

mumkin.

Message broker tizimlar mikroservislar orasida Observer patternini amalga

oshirish uchun ishlatiladi. Apache Kafka, RabbitMQ, Amazon SNS/SQS kabi tizimlar

hodisalarni saqlash, uzatish va tarqatish vazifasini bajaradi. Bu tizimlar yuqori

samaradorlik, ishonchlilik va miqyoslanishni ta'minlaydi.

Event sourcing arxitektura patterni Observer patterni bilan yaqin bog'liq. Bu

yondashuvda tizimning holatini to'g'ridan-to'g'ri saqlamaydi, balki barcha hodisalarni

ketma-ketlikda saqlaydi. Tizimning joriy holatini olish uchun barcha hodisalarni qayta

o'ynatish kerak. Bu yondashuv audit trail, debugging va vaqt bo'ylab holatni qayta

tiklash kabi imkoniyatlarni beradi.

CQRS patterni ham Observer patterni bilan birgalikda ishlatiladi. Command

modelda yuz bergan o'zgarishlar hodisalar sifatida query modelga uzatiladi. Bu read va

write operatsiyalarini ajratish va ularni mustaqil miqyoslash imkonini beradi.

Saga patterni taqsimlangan transaksiyalarni boshqarish uchun Observer

patternidan foydalanadi. Har bir mikroservis o'z lokalaviy transaksiyasini bajaradi va

natijasi haqida hodisa chiqaradi. Boshqa mikroservislar bu hodisalarga asoslanib

o'zlarining harakatlarini amalga oshiradi yoki kompensatsiya qiladi.

Eventual consistency tushunchasi mikroservislarda Observer patterni bilan

chambarchas bog'liq. Hodisalar tarqalishi vaqt talab qiladi va turli xil servislar

ma'lumotlarining izchiligi darhol emas, balki vaqt o'tishi bilan ta'minlanadi. Bu

taqsimlangan tizimlar uchun normal va qabul qilinadigan xatti-harakatdir.

https://journalss.org/

Ta'lim innovatsiyasi va integratsiyasi

 https://journalss.org 59-son_1-to’plam_Dekabr -2025

258

ISSN:3030-3621

Real vaqt tizimlarida Observer patterni ma'lumotlarning darhol uzatilishi va

qayta ishlanishini ta'minlaydi. Moliyaviy bozorlar, monitoring tizimlari, onlayn

o'yinlar kabi ilovalar real vaqt ma'lumotlar oqimlariga bog'liq.

WebSocket texnologiyasi veb ilovalar uchun real vaqt muloqotni ta'minlaydi va

Observer patternining asoslarini amalga oshiradi. Server tomonda sodir bo'lgan

hodisalar darhol barcha ulangan klientlarga uzatiladi. Bu ikki tomonlama full-duplex

muloqot kanalini yaratadi.

Server-Sent Events texnologiyasi serverdan klientga bir tomonlama real vaqt

ma'lumotlar oqimini ta'minlaydi. Bu oddiy HTTP ustida qurilgan va Observer

patternining soddalashtirilgan versiyasini amalga oshiradi.

Real vaqt dashboard va monitoring tizimlari Observer patterniga asoslanadi.

Metrikalar, loglar va hodisalar doimiy ravishda to'planadi va barcha ulangan

dashboardlarga uzatiladi. Grafana, Kibana, Datadog kabi tizimlar ushbu mexanizmdan

foydalanadi.

Collaborative editing tizimlarida bir nechta foydalanuvchi bir vaqtning o'zida bir

xil hujjat ustida ishlashi mumkin. Har bir foydalanuvchining o'zgarishlari darhol

boshqa barcha foydalanuvchilarga uzatiladi. Google Docs, Figma, Notion kabi ilovalar

ushbu yondashuvdan foydalanadi.

Live chat tizimlari Observer patternining klassik qo'llanilishidir.

Foydalanuvchilar xonaga obuna bo'ladi va xonada sodir bo'layotgan barcha xabarlar

haqida darhol xabardor bo'ladi. Slack, Discord, Telegram kabi platformalar ushbu

mexanizmni qo'llaydi.

Real vaqt notification tizimlari foydalanuvchilarga muhim hodisalar haqida

darhol xabar beradi. Push notification, email, SMS va boshqa kanallar orqali

bildirishnomalar uzatiladi. Bu tizimlar ko'pincha prioritetlar, filtrlash va

personalizatsiya mexanizmlarini o'z ichiga oladi.

Har bir dasturlash tili Observer patternini o'ziga xos usulda amalga oshirish

imkoniyatlarini taqdim etadi. Java tilida Observer patterni uchun maxsus interfeys va

klasslar mavjud edi, lekin ular deprecated deb belgilandi. Zamonaviy Java dasturlarida

PropertyChangeListener yoki JavaFX Observable API dan foydalaniladi.

Python tilida Observer patternini amalga oshirish uchun turli xil kutubxonalar

mavjud. PyPubSub kutubxonasi publish-subscribe modelini taqdim etadi. RxPY

kutubxonasi esa reaktiv dasturlash uchun to'liq funksionallikni beradi. Python signals

va slots mexanizmi ham Observer patternining bir turi hisoblanadi.

JavaScript va TypeScript tillari hodisalar mexanizmini o'z ichiga oladi.

EventEmitter klassi Node.js muhitida Observer patternini amalga oshirish uchun

standart vosita hisoblanadi. Brauzerda esa DOM hodisalari va CustomEvent API dan

foydalaniladi. RxJS kutubxonasi JavaScript uchun eng mashhur reaktiv dasturlash

kutubxonasidir.

https://journalss.org/

Ta'lim innovatsiyasi va integratsiyasi

 https://journalss.org 59-son_1-to’plam_Dekabr -2025

259

ISSN:3030-3621

C# tilida event va delegate mexanizmlari Observer patternini tabiiy tarzda

qo'llab-quvvatlaydi. IObservable va IObserver interfeyslari ham mavjud bo'lib, ular

LINQ to Events funksionalligini ta'minlaydi. Reactive Extensions for .NET

kutubxonasi murakkab reaktiv stsenariylar uchun ishlatiladi.

Swift tilida NotificationCenter va Combine framework Observer patternini

amalga oshirish uchun ishlatiladi. Combine Apple ning reaktiv dasturlash kutubxonasi

bo'lib, iOS va macOS ilovalarida keng qo'llaniladi.

Kotlin tilida Flow API reaktiv oqimlar uchun ishlatiladi. LiveData va StateFlow

Android ilovalarida state management uchun Observer patternini qo'llaydi. Kotlin

Coroutines bilan integratsiya qilingan bu mexanizmlar zamonaviy Android

dasturlashda standart hisoblanadi.

Go tilida Observer patternini amalga oshirish uchun channels va goroutines dan

foydalaniladi. Go ning konkurentlik modeli Observer patternini juda samarali tarzda

amalga oshirish imkonini beradi.

Rust tilida Observer patternini amalga oshirish ownership va borrowing

qoidalari tufayli qo'shimcha murakkabliklar tug'diradi. Lekin Arc va Weak pointerlar

yordamida xavfsiz implementatsiya yaratish mumkin. Tokio kutubxonasi asinxron

Observer patternini qo'llab-quvvatlaydi.

XULOSA

Observer patterni ob'ektga yo'naltirilgan dasturlashning eng muhim va keng

tarqalgan patternlaridan biri hisoblanadi. Uning asosiy maqsadi ob'ektlar orasida zaif

bog'lanishni ta'minlash va bir ob'ektdagi o'zgarishlar haqida boshqa ob'ektlarni

avtomatik ravishda xabardor qilish mexanizmini yaratishdir.

Ushbu tadqiqot ishida Observer patternining nazariy asoslari, arxitektura

tamoyillari, amalga oshirish usullari va zamonaviy dasturlashdagi qo'llanilishi batafsil

ko'rib chiqildi. Pattern foydalanuvchi interfeyslari, reaktiv dasturlash, mikroservis

arxitekturalari, real vaqt tizimlari va ko'plab boshqa sohalarda keng qo'llanilishi

aniqlandi.

Observer patternining asosiy afzalliklari zaif bog'lanish, tizimning

moslashuvchanligini oshirish, kod qayta ishlatilishi, modullik va bir nechta ob'ektlarni

sinxronlash imkoniyatidir. Biroq, pattern kutilmagan o'zgarishlar zanjiri, xotira oqib

ketishi, murakkablik oshishi va samaradorlik muammolari kabi kamchiliklarga ham

ega.

Foydalanilgan Adabiyotlar

1. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley Professional, 1994. 395 p.

2. Freeman E, Robson E, Bates B, Sierra K. Head First Design Patterns: Building

Extensible and Maintainable Object-Oriented Software. O'Reilly Media, 2020.

694 p.

https://journalss.org/

Ta'lim innovatsiyasi va integratsiyasi

 https://journalss.org 59-son_1-to’plam_Dekabr -2025

260

ISSN:3030-3621

3. Fowler M. Patterns of Enterprise Application Architecture. Addison-Wesley

Professional, 2002. 560 p.

4. Vernon V. Implementing Domain-Driven Design. Addison-Wesley

Professional, 2013. 656 p.

5. Richardson C. Microservices Patterns: With Examples in Java. Manning

Publications, 2018. 520 p.

6. Kleppmann M. Designing Data-Intensive Applications: The Big Ideas Behind

Reliable, Scalable, and Maintainable Systems. O'Reilly Media, 2017. 616 p.

7. Nygard M. Release It! Design and Deploy Production-Ready Software.

Pragmatic Bookshelf, 2018. 378 p.

8. Vernon V. Reactive Messaging Patterns with the Actor Model: Applications and

Integration in Scala and Akka. Addison-Wesley Professional, 2015. 512 p.

9. Meijer E. Your Mouse is a Database. Communications of the ACM. 2012. Vol.

55. No. 5. P. 66-73.

https://journalss.org/

