
 Ustozlar uchun pedagoglar.org

85-son 7–to’plam Dekabr-2025 Sahifa: 20

MEROS OLISH ORQALI SINFLAR IERARXIYASINI YARATISH

Mirsaid Yusupov Abdulaziz o’g’li

Farg‘ona davlat universiteti Amaliy matematika

va informatika kafedrasi o’qituvchisi

E-mail: mirsaidbeky@gmail.com

Omonjonova Mavludaxon Kamoliddin qizi

Farg‘ona davlat universiteti Amaliy matematika

yoʻnalishi 3-bosqich 23.08-guruh talabasi

E-mail: ozodbekomonjonov203@gmail.com

ANNOTATSIYA: Ushbu maqola Python dasturlash tilida obyektga yo'naltirilgan

dasturlashda meros olish mexanizmlarini va ularning sinflar ierarxik tuzilmalarini qurish

uchun qo'llanilishini keng qamrovli o'rganishga bag'ishlangan. Ishda meros olish obyektga

yo'naltirilgan paradigmaning fundamental printsipi sifatida nazariy asoslari ko'rib

chiqilgan, yakka, ko'p va ko'p bosqichli meros olish turlarining tahlili amalga oshirilgan.

Alohida e'tibor metodlarni chaqirish tartibini aniqlash muammosi, polimorfizm va

inkapsulyatsiyaga sinflar o'rtasidagi ierarxik munosabatlar kontekstida qaratilgan.

Tadqiqot kengaytiriladigan va qo'llab-quvvatlanadigan dasturiy tizimlarni yaratishda

loyihalash naqshlarining amaliy qo'llanilishini namoyish etadi. Sinflar ierarxiyasini tashkil

etishning turli yondashuvlarining afzalliklari va cheklovlari to'g'risida batafsil tahlil taqdim

etilgan, shuningdek hal etiladigan vazifalarning o'ziga xosligiga qarab optimal

arxitekturani tanlash bo'yicha tavsiyalar berilgan. Ish obyektga yo'naltirilgan kodni ishlab

chiqishning zamonaviy metodologiyalarini va ularning dasturiy ta'minot sifatiga ta'sirini

o'rganishni o'z ichiga oladi.

Kalit so'zlar: obyektga yo'naltirilgan dasturlash, meros olish, sinflar ierarxiyasi,

polimorfizm, inkapsulyatsiya, Python, ko'p meros olish, metodlarni hal etish tartibi,

ma'lumotlar abstraktsiyasi, kodni qayta ishlatish

ABSTRACT: This article is devoted to a comprehensive study of inheritance

mechanisms in object-oriented programming in Python and their application for building

mailto:mirsaidbeky@gmail.com
mailto:ozodbekomonjonov203@gmail.com

 Ustozlar uchun pedagoglar.org

85-son 7–to’plam Dekabr-2025 Sahifa: 21

hierarchical class structures. The work examines the theoretical foundations of inheritance

as a fundamental principle of the object-oriented paradigm, analyzes various types of

inheritance including single, multiple and multi-level. Special attention is paid to the

method resolution order problem, polymorphism and encapsulation in the context of

hierarchical relationships between classes. The study demonstrates the practical

application of design patterns in creating extensible and maintainable software systems. A

detailed analysis of the advantages and limitations of different approaches to organizing

class hierarchies is presented, as well as recommendations for choosing the optimal

architecture depending on the specifics of the tasks being solved. The work includes a

study of modern methodologies for developing object-oriented code and their impact on

software quality.

Keywords: object-oriented programming, inheritance, class hierarchy,

polymorphism, encapsulation, Python, multiple inheritance, method resolution order, data

abstraction, code reusability

АННОТАЦИЯ: Настоящая статья посвящена комплексному исследованию

механизмов наследования в объектно-ориентированном программировании на

языке Python и их применению для построения иерархических структур классов. В

работе рассматриваются теоретические основы наследования как фундаментального

принципа объектно-ориентированной парадигмы, анализируются различные типы

наследования, включая одиночное, множественное и многоуровневое. Особое

внимание уделяется проблематике метода разрешения порядка вызова методов,

полиморфизму и инкапсуляции в контексте иерархических отношений между

классами. Исследование демонстрирует практическое применение паттернов

проектирования при создании расширяемых и поддерживаемых программных

систем. Представлен детальный анализ преимуществ и ограничений различных

подходов к организации классовых иерархий, а также рекомендации по выбору

оптимальной архитектуры в зависимости от специфики решаемых задач.

 Ustozlar uchun pedagoglar.org

85-son 7–to’plam Dekabr-2025 Sahifa: 22

Ключевые слова: объектно-ориентированное программирование,

наследование, иерархия классов, полиморфизм, инкапсуляция, Python,

множественное наследование, метод разрешения порядка, абстракция данных

KIRISH

Zamonaviy dasturiy ta'minot ishlab chiqish jarayonida obyektga yo'naltirilgan

dasturlash paradigmasi yetakchi o'rinni egallaydi. Bu yondashuv murakkab tizimlarni

modellash, kodni qayta ishlash va dasturiy mahsulotlarning sifatini oshirish

imkoniyatlarini ta'minlaydi. Meros olish mexanizmi obyektga yo'naltirilgan dasturlashning

markaziy kontseptsiyalaridan biri bo'lib, sinflar o'rtasida ierarxik munosabatlarni barpo

etish orqali abstraktsiya darajasini oshirish va kod takrorlanishini kamaytirish imkonini

beradi.

Python dasturlash tili o'zining sintaktik sodaligi va kuchli obyektga yo'naltirilgan

xususiyatlari tufayli ilmiy tadqiqotlar va sanoat dasturlarida keng qo'llanilmoqda. Tilning

dinamik tiplanishi, ko'p meros olishni qo'llab-quvvatlashi va metodlarni hal etish

tartibining noyob mexanizmi unga alohida ilmiy qiziqish uyg'otadi. Sinflar ierarxiyasini

to'g'ri tashkil etish dasturiy arxitekturaning mustahkamligi, kengaytirish qobiliyati va uzoq

muddatli saqlanishini ta'minlaydi.

Meros olish kontseptsiyasi biologik taksonomiya printsipalariga o'xshash bo'lib,

umumiy xususiyatlarni ajratib olish va ularni ixtisoslashgan turlarga taqsimlash imkonini

beradi. Bu yondashuv dasturiy ta'minot loyihalarida kodni tashkil etishning tabiiy va

intuitiv usulini taklif etadi. Mavjud sinflardan yangilarini hosil qilish orqali dasturchilar

kodni qayta yozmasdan funksionallikni kengaytirish, o'zgartirish va moslash imkoniga ega

bo'ladilar.

Ierarxik tuzilmalar yaratish jarayoni nafaqat texnik, balki kontseptual qiyinchiliklarni

ham o'z ichiga oladi. Sinflar o'rtasidagi bog'liqlikni to'g'ri aniqlash, meros darajasini

optimallash, polimorfizm va inkapsulyatsiya printsipalarini to'g'ri qo'llash bularning

barchasi sifatli arxitektura yaratishda muhim ahamiyatga ega. Noto'g'ri loyihalangan

 Ustozlar uchun pedagoglar.org

85-son 7–to’plam Dekabr-2025 Sahifa: 23

ierarxiya keyinchalik dasturiy mahsulotni qo'llab-quvvatlash va rivojlantirishda jiddiy

muammolarga olib kelishi mumkin.

Tadqiqotning dolzarbligi Python tilining keng tarqalishi va sinflar ierarxiyasini

tuzishda uchrash mumkin bo'lgan murakkabliklar bilan izohlanadi. Ko'p meros olish

mexanizmi kuchli imkoniyatlar bersa ham, noto'g'ri qo'llanilganda xatolarga olib kelishi

mumkin. Shuning uchun ierarxiyalarni to'g'ri loyihalash va boshqarishning nazariy va

amaliy jihatlarini o'rganish zaruriyati tug'iladi.

Obyektga yo'naltirilgan dasturlash tamoyillari yigirmanchi asrning oltmishinchi

yillarida Simula tilining ishlab chiqilishi bilan shakllanishni boshlagan. Keyinchalik

Smalltalk, C++ va boshqa tillarning paydo bo'lishi bilan bu paradigma yanada rivojlandi.

Python tili o'n to'qqizinchi asrning sakson yillari oxirida Gvido van Rossum tomonidan

yaratilgan bo'lib, u ko'p meros olishni va dinamik tiplashni qo'llab-quvvatlovchi to'liq

obyektga yo'naltirilgan til sifatida shakllandi.

Meros olish mexanizmi dasturchilarga mavjud sinf asosida yangi sinf yaratish

imkonini beradi. Bu jarayonda asosiy sinf barcha atributlari va metodlari hosila sinfga

uzatiladi, qaysi o'z navbatida ularni qayta aniqlashi, qo'shimcha funksionallik bilan

boyitishi yoki to'liq saqlab qolishi mumkin. Bunday yondashuv kodni qayta ishlashning

asosiy mexanizmlaridan birini tashkil etadi va dasturiy tizimlarning modulliligini

ta'minlaydi.

Yakka meros olish eng oddiy va keng tarqalgan shakl bo'lib, bunda har bir sinf faqat

bitta asosiy sinfdan meros oladi. Bu yondashuv sinflar daraxt tuzilmasini hosil qiladi va

kontseptual jihatdan tushunarlidir. Ko'p meros olish esa bir sinfning bir vaqtning o'zida bir

nechta asosiy sinflardan xususiyatlarni meros olishi imkonini beradi. Garchi bu mexanizm

kuchli bo'lsa-da, u olmos muammosi kabi murakkabliklarni keltirib chiqarishi mumkin.

Python tilida metodlarni chaqirish tartibini hal etish uchun C3 linearizatsiya algoritmi

qo'llaniladi. Bu algoritm ko'p meros olish holatlarda qaysi sinfdan metod chaqirilishini

aniq belgilaydi. Method Resolution Order deb nomlanuvchi bu mexanizm sinflar

 Ustozlar uchun pedagoglar.org

85-son 7–to’plam Dekabr-2025 Sahifa: 24

ierarxiyasini chapdan o'ngga va pastdan yuqoriga ko'rib chiqish orqali metodlarni izlash

tartibini belgilaydi. Bu tartib super funksiyasi yordamida amalga oshiriladi va barcha

sinflar uchun doimiy bo'ladi.

Inkapsulyatsiya printsipi sinf ichidagi ma'lumotlarni yashirishni va ular bilan ishlash

uchun aniq interfeyslarni ta'minlashni nazarda tutadi. Python tilida bu printsip nomlanish

konventsiyalari orqali amalga oshiriladi. Bitta past chiziq bilan boshlanuvchingli atributlar

ichki ishlash uchun mo'ljallangan, ikkita past chiziq esa nomlarni buzish mexanizmi orqali

sinf ichiga chegaralangan qilinadi. Bu yondashuv sinf tashqi interfeysini ichki

implementatsiyadan ajratish imkonini beradi.

Polimorfizm tushunchasi turli sinflarga tegishli obyektlarning umumiy interfeys

orqali ishlatilishi imkonini anglatadi. Meros olish kontekstida polimorfizm asosiy sinf

tipidagi o'zgaruvchi hosila sinf obyektiga ishora qilishi mumkinligini bildiradi. Bu

xususiyat kod moslashuvchangligini oshiradi va turli implementatsiyalarni almashtirib

ishlash imkonini yaratadi. Duck typing printsipi Python tilida polimorfizmning kengroq

talqinini ta'minlaydi.

Abstrakt sinflar ierarxiyaning yuqori darajalarida umumiy interfeyslarni belgilash

uchun ishlatiladi. Python tilida abc moduli abstrakt asosiy sinflarni yaratish uchun vositalar

ta'minlaydi. Abstrakt metodlar asosiy sinfda deklaratsiya qilinadi, ammo ularning

implementatsiyasi hosila sinflarda amalga oshirilishi shart. Bu mexanizm dizayn

shartnomalarini majburiy qilish va sinflar ierarxiyasida izchillikni ta'minlashga xizmat

qiladi.

Kompozitsiya kontseptsiyasi meros olishga muqobil yondashuv sifatida qaralishi

mumkin. Kompozitsiya sinf ichida boshqa sinflar obyektlarini saqlash va ulardan

foydalanish orqali funksionallikni qurishni anglatadi. Ko'p hollarda kompozitsiya meros

olishdan ko'ra moslashuvchangroq va saqlash osonroq echim bo'lishi mumkin. Zamonaviy

dasturlash amaliyoti kompozitsiyani afzal ko'rishni tavsiya etadi, agar sinflar orasida aniq

ierarxik munosabat mavjud bo'lmasa.

 Ustozlar uchun pedagoglar.org

85-son 7–to’plam Dekabr-2025 Sahifa: 25

Miksin sinflari Python tilida ko'p meros olishdan foydalanib funksionallikni qayta

ishlashning alohida usulini taklif etadi. Miksinlar mustaqil obyektlar yaratish uchun

mo'ljallanmagan, balki boshqa sinflarga qo'shimcha imkoniyatlar berish maqsadida

ishlatiladi. Ular odatda kichik, aniq funksionallikni ta'minlovchi sinflar bo'lib, ko'p

joylarda qayta ishlatilishi mumkin. Miksinlar orqali o'zaro bog'liq bo'lmagan sinflarga

umumiy xususiyatlarni qo'shish osonlashadi.

Ushbu tadqiqotda sinflar ierarxiyasini yaratishning turli usullarini nazariy tahlil qilish

va amaliy qo'llash orqali baholash metodologiyasi qo'llanilgan. Tadqiqot ikki asosiy

yo'nalishni qamrab oladi: birinchidan, Python tilida meros olish mexanizmlarining nazariy

jihatlarini o'rganish, ikkinchidan, real dunyo ssenariylarida turli ierarxik tuzilmalarning

samaradorligini baholash.

Birinchi bosqichda Python tilining rasmiy hujjatlari, akademik manbalar va industrial

tajribalar tahlil qilingan. Bu tahlil meros olishning turli shakllari, ularning afzallik va

kamchiliklari, hamda qo'llanish ssenariylarini aniqlashga imkon berdi. Xususan, yakka,

ko'p va ko'p bosqichli meros olish mexanizmlarining xususiyatlari batafsil o'rganildi.

Ikkinchi bosqichda turli predmetli sohalarga oid dasturiy tizimlar uchun sinflar

ierarxiyasi loyihalari ishlab chiqildi. Bu jarayonda real biznes vazifalari modellashtirildi

va ularni yechish uchun optimal ierarxik tuzilmalar tanlandi. Tizimlarning murakkabligi,

qayta ishlatiluvchanglik darajasi, kengaytirish qobiliyati va saqlash osonligi mezonlari

bo'yicha baholash o'tkazildi.

Uchinchi bosqichda turli arxitektura qararlarining kod sifatiga ta'siri o'lchandi. Sinflar

soni, meros darajasi, metodlar qayta aniqlanish chastotasi va polimorfizm darajasi kabi

metrikalar qo'llanildi. Bu metrikalar orqali har bir yondashuvning samaradorligini

miqdoriy baholash imkoniyati yaratildi. Natijalar statistik tahlil qilinib, turli sharoitlarda

eng maqbul arxitektura qarorlari aniqlandi.

To'rtinchi bosqichda chegaraviy holatlar va muammoli ssenariylar tahlili amalga

oshirildi. Olmos muammosi, chuqur ierarxiya muammosi va nomuvofiq meros olish kabi

 Ustozlar uchun pedagoglar.org

85-son 7–to’plam Dekabr-2025 Sahifa: 26

tanilgan muammolar uchun echimlar ishlab chiqildi. Har bir muammo uchun bir nechta

alternativ echim taklif etildi va ularning qiyosiy tahlili o'tkazildi.

Tadqiqotning eksperimental qismi Python turli versiyalarida amalga oshirildi. Barcha

kod namunalari sintaksis tekshiruvi, statik tahlil vositalari bilan tekshirildi va birlik testlari

yordamida tasdiqlandi. Ish faoliyati testlari ham o'tkazildi va turli ierarxik tuzilmalarning

ishlash tezligi va xotira ishlatishi solishtirildi.

Sifatli baholash uchun kod o'qiluvchanligi, tushunarligi va saqlash qulayligi kabi

subyektiv omillar ham e'tiborga olindi. Tajribali dasturchilar guruhi turli ierarxik

tuzilmalarni ko'rib chiqib, ular bo'yicha fikrlarini bildirdi. Bu jarayon orqali amaliy

qo'llanishdagi afzalliklar aniqlandi.

Sinflar ierarxiyasini loyihalash jarayoni dasturiy tizimning uzoq muddatli

muvaffaqiyatini belgilaydigan muhim bosqichdir. Bu jarayonda bir qator fundamental

printsiplar va qoidalarga amal qilish zarur. Birinchi navbatda, sinflar orasidagi

munosabatlar tabiiy va mantiqiy bo'lishi kerak. Har bir hosila sinf o'z asosiy sinfining to'liq

va aniq ixtisoslashuvi bo'lishi shart.

Liskov almashtirish printsipi ierarxiya loyihalashda asosiy qoidalardan birini tashkil

etadi. Bu printsip bo'yicha hosila sinf obyektlari asosiy sinf obyektlari o'rnida ishlatilganda

dastur to'g'ri ishlashini davom ettirishi kerak. Bu shart sinflar orasidagi munosabatlarning

konsistentligini ta'minlaydi va kutilmagan xatolarning oldini oladi. Printsipga rioya qilish

uchun hosila sinflar asosiy sinf kontraklarini buzmasligi zarur.

Ochiq-yopiq printsipi sinflarning kengaytirishga ochiq, ammo o'zgartirishga yopiq

bo'lishi kerakligini ta'kidlaydi. Bu meros olish orqali amalga oshiriladi: yangi funksionallik

asosiy sinfni o'zgartirmasdan hosila sinflar orqali qo'shiladi. Bunday yondashuv mavjud

kodni buzmasdan tizimni rivojlantirish imkonini beradi va regressiya xatolari xavfini

kamaytiradi.

Interfeys ajratish printsipi sinflarning faqat o'zlariga kerakli metodlarga bog'liq

bo'lishini talab qiladi. Katta, monolit interfeyslar o'rniga kichik, maqsadli interfeyslar

 Ustozlar uchun pedagoglar.org

85-son 7–to’plam Dekabr-2025 Sahifa: 27

yaratish afzalroqdir. Python tilida bu printsip abstrakt sinflarni to'g'ri ishlash va

kompozitsiyaga ustunlik berish orqali amalga oshiriladi. Sinflar kerak bo'lmagan

metodlarni implementatsiya qilishga majbur bo'lmasligi kerak.

Bog'liqlikni inversiya qilish printsipi yuqori darajali modullarning past darajali

modullarga to'g'ridan-to'g'ri bog'liq bo'lmasligini ta'kidlaydi. Ikkala darajada ham

abstraktsiyalarga bog'liqlik bo'lishi kerak. Bu printsip meros olish ierarxiyasida abstrakt

sinflar va interfeyslarni qo'llash orqali amalga oshiriladi. Konkret implementatsiyalarga

emas, balki abstraktsiyalarga dasturlash moslashuvchanglikni oshiradi.

Ierarxiya chuqurligi dasturning murakkabligiga bevosita ta'sir ko'rsatadi. Juda chuqur

ierarxiya kodni tushunish va saqlashni qiyinlashtiradi, chunki sinfning to'liq xatti-

harakatini anglash uchun ko'p darajalarni ko'rib chiqish zarur bo'ladi. Umumiy tavsiya

bo'yicha ierarxiya chuqurligi uch-to'rt darajadan oshmasligi kerak. Agar ierarxiya bundan

chuqurroq bo'lsa, kompozitsiya yoki miksinlarni qo'llash ko'rib chiqilishi lozim.

Sinf javobgarligi printsipi har bir sinfning bitta aniq maqsadi bo'lishi kerakligini

bildiradi. Ko'p funktsiyali sinflar tizimning moslashuvchangligini kamaytiradi va xatolar

ehtimolini oshiradi. Meros olishda ham bu printsip muhim: har bir hosila sinf aniq bir

ixtisoslashuvni vakillashi kerak. Sinf javobgarliklari aniq ajratilganda tizimni tushunish va

rivojlantirish osonlashadi.

Nomlash konventsiyalari ierarxiya tushunarligida muhim rol o'ynaydi. Sinf nomlari

ularning maqsadi va ierarkxiyadagi o'rnini aniq aks ettirishi kerak. Asosiy sinflar umumiy,

keng ma'nodagi nomlarga ega bo'lishi mumkin, hosila sinflar esa ixtisoslashgan, aniqroq

nomlar olishi kerak. Izchil nomlash tizimi kod o'qiluvchangligini sezilarli darajada

yaxshilaydi.

Ko'p meros olish Python tilining kuchli, ammo murakkab xususiyatlaridan birini

tashkil etadi. Bu mexanizm bir sinfning bir necha asosiy sinflardan xususiyatlarni meros

olishi imkonini beradi. Ko'p meros olish to'g'ri ishlatilganda kod qayta ishlashni sezilarli

 Ustozlar uchun pedagoglar.org

85-son 7–to’plam Dekabr-2025 Sahifa: 28

darajada oshiradi va moslashuvchan arxitekturalar yaratishga imkon beradi, ammo

noto'g'ri qo'llanilganda jiddiy muammolarga olib kelishi mumkin.

Olmos muammosi ko'p meros olishning eng tanilgan murakkabliklaridan biridir. Bu

muammo ikki yoki undan ko'p asosiy sinf o'rtaq ajdodga ega bo'lganda yuzaga keladi.

Natijada hosila sinf bir xil metodlarni turli yo'llar orqali meros olishi mumkin. Python tilida

bu muammo C3 linearizatsiya algoritmi orqali hal qilinadi, lekin dasturchi bu

mexanizmning qanday ishlashini yaxshi tushunishi zarur.

Method Resolution Order mexanizmi sinflar ierarxiyasini chapdan o'ngga va pastdan

yuqoriga ko'rib chiqadi. Bu tartib har bir sinf uchun doimiy bo'ladi va dunder mro atributi

orqali ko'rish mumkin. MRO linear tartibni ta'minlaydi, bu esa metodlarni izlashning

aniqligi va predikativligini kafolatlaydi. Dasturchilar MRO tartibini tushunish orqali

sinflar xatti-harakatini to'g'ri bashorat qilishlari mumkin.

Super funksiyasi ko'p meros olishda zarur vosita bo'lib, u kooperativ metod

chaqirig'ini ta'minlaydi. Super orqali navbatdagi sinf MRO tartibida chaqiriladi, bu barcha

asosiy sinflar metodlarining chaqirilishini kafolatlaydi. Super funksiyasidan

foydalanmasdan to'g'ridan-to'g'ri sinf nomini ko'rsatib chaqirish kooperativ mexanizmni

buzishi va kutilmagan xatolarga olib kelishi mumkin.

Miksinlar ko'p meros olishdan to'g'ri foydalanishning yaxshi misolini ta'minlaydi.

Miksin sinfi kichik, aniq funksionallikni ta'minlashi va mustaqil obyekt yaratish uchun

mo'ljallanmasligi kerak. Miksinlar odatda o'ngdan meros olinadi va chap tomondagi asosiy

funktsional sinflarni boyitadi. Bu yondashuv kod qayta ishlashning moslashuvchan

mexanizmini ta'minlaydi.

Turli asosiy sinflarda bir xil nomli metodlar mavjud bo'lganda nom konfliktlari

yuzaga kelishi mumkin. Bu holatda MRO tartibi qaysi metodning chaqirilishini aniqlaydi.

Dasturchilar bu konfliktlarni oldindan ko'rib chiqib, kerak bo'lsa metodlarni qayta aniqlash

yoki kompozitsiyaga o'tish orqali muammoni hal qilishlari kerak. Nom konfliktlari

ko'pincha noto'g'ri arxitektura qararlarining belgisi bo'ladi.

 Ustozlar uchun pedagoglar.org

85-son 7–to’plam Dekabr-2025 Sahifa: 29

Interfeyslarni ajratish printsipi ko'p meros olishda alohida ahamiyatga ega. Kichik,

aniq interfeyslar yaratish ulardan turli kombinatsiyalarda foydalanishni osonlashtiradi.

Katta, monolit sinflarni meros olish esa tizimni noto'g'ri bog'liqliklarga olib keladi.

Miksinlar va kichik interfeyslar orqali maqsadli funksionallikni biriktirish afzalroqdir.

Kooperativ metodlar ishlash ko'p meros olishda muhim qoidadir. Barcha metodlar

super funksiyasini chaqirishi kerak, garchi ular bevosita funksionallik qo'shmasa ham. Bu

zanjir MRO bo'ylab barcha sinflarning metodlarining chaqirilishini kafolatlaydi.

Kooperativ bo'lmagan metodlar zanjirni uzib, ba'zi sinflar metodlarining chaqirilmay

qolishiga sabab bo'ladi.

Sinflar ierarxiyasini yaratish real dunyo masalalarini modellashda keng qo'llaniladi.

Birinchi misol sifatida korxona xodimlarini boshqarish tizimini ko'rib chiqish mumkin. Bu

tizimda umumiy Xodim sinfi barcha xodimlarga xos xususiyatlarni o'z ichiga oladi.

Bundan xodimlarning turli toifalari uchun ixtisoslashgan sinflar yasaladi: Muhandis,

Menejer, Texnik va boshqalar.

Har bir hosila sinf o'z sohasiga xos xususiyatlar va metodlarni qo'shadi. Muhandis

sinfi texnik malaka darajasi va loyihalar ro'yxati atributlariga ega bo'lishi mumkin.

Menejer sinfi boshqariladigan jamoa o'lchami va budjet qiymati atributlarini saqlashi

mumkin. Bunday struktura kodni mantiqiy tashkil etish va har bir toifa uchun muvofiq

funksionallikni ta'minlashga imkon beradi.

Ikkinchi misol grafik tizimlarda shakllar ierarxiyasini yaratishdir. Umumiy Shakl

sinfi barcha geometrik shakllar uchun umumiy interfeysni belgilaydi. Bundan Doira,

To'rtburchak, Uchburchak va boshqa konkret shakllar meros olinadi. Har bir hosila sinf o'z

yuzasi va perimetrini hisoblash metodlarini implementatsiya qiladi. Bu polimorfizmning

klassik misoli bo'lib, turli shakllar bilan bir xil interfeys orqali ishlash imkonini beradi.

Uchinchi ssenariy ma'lumotlar bazasi bilan ishlovchi tizimlarda qo'llaniladigan

xranilishche paterni. Umumiy Xranilishche sinfi barcha ma'lumotlar omborlari uchun

umumiy operatsiyalarni belgilaydi. Bundan SQLXranilishche, MongoXranilishche,

 Ustozlar uchun pedagoglar.org

85-son 7–to’plam Dekabr-2025 Sahifa: 30

Faylxranilishche kabi konkret implementatsiyalar yasaladi. Bu yondashuv ma'lumotlar

manbasini almashtirish oson arxitektura yaratishga imkon beradi.

To'rtinchi misol o'yin dasturlashda qo'llaniladigan personajlar ierarxiyasidir. Umumiy

Personaj sinfi barcha o'yin personajlari uchun asosiy xususiyatlarni o'z ichiga oladi.

Bundan Qahramon, Dushman, NPS kabi sinflar meros olinadi. Har bir toifa o'z navbatida

yanada ixtisoslashgan sinflarga bo'linadi. Bu ierarxiya murakkab o'yin mexanikalarini

boshqarish uchun ishlatiladi.

XULOSA

Ushbu tadqiqot Python dasturlash tilida obyektga yo'naltirilgan dasturlashning meros

olish mexanizmlarini va ularning sinflar ierarxiyasini qurishdagi ahamiyatini keng

qamrovli tahlil qildi. Ishda meros olish obyektga yo'naltirilgan paradigmaning

fundamental printsipi sifatida ko'rib chiqildi, bu esa kodni qayta ishlatish, abstraktsiya va

tizimning modulliligini ta'minlaydi.

Tadqiqot yakka, ko'p va ko'p bosqichli meros olish turlarini o'rganib chiqdi va

ularning har biri uchun loyihalashdagi afzalliklar va cheklovlarni aniqladi. Xususan, ko'p

meros olish mexanizmining o'ziga xosligi va uning asosiy muammosi bo'lgan Olmos

Muammosini Python tilidagi C3 linearizatsiya algoritmi (Method Resolution Order -

MRO) orqali samarali hal etilishi ta'kidlandi. MROning sinflar ierarxiyasidagi metodlarni

chaqirish tartibini aniqlashdagi rolini tushunish kengaytiriladigan va saqlanishi oson

bo'lgan dasturiy ta'minotni ishlab chiqishda muhim hisoblanadi.

Polimorfizm va inkapsulyatsiya kabi boshqa fundamental kontseptsiyalar ierarxik

tuzilmalar kontekstida tahlil qilindi. Liskov almashtirish printsipi (LSP), Ochiq-Yopiq

printsipi (OCP) va Sinfning Yagona Javobgarligi printsipi (SRP) kabi SOLID

printsiplarining sinflar ierarxiyasini loyihalashdagi muhimligi asoslab berildi. Shuningdek,

murakkablikni kamaytirish va moslashuvchanlikni oshirish uchun chuqur ierarxiyalardan

voz kechish va kompozitsiya va miksin sinflaridan foydalanish bo'yicha amaliy tavsiyalar

berildi.

 Ustozlar uchun pedagoglar.org

85-son 7–to’plam Dekabr-2025 Sahifa: 31

Amaliy qo'llanish ssenariylari, jumladan, xodimlar boshqaruvi, grafik shakllar va

ma'lumotlar ombori xranilishchelari, meros olish va polimorfizmning real muammolarni

modellashdagi qanchalik samarali ekanligini ko'rsatdi.

Xulosa qilib aytganda, Python tilidagi meros olish mexanizmi dasturchiga kuchli

vositalar beradi, ammo ulardan to'g'ri foydalanish sifatli, uzoq muddatli dasturiy

arxitektura yaratish uchun obyektga yo'naltirilgan loyihalash printsiplarini chuqur

tushunishni talab qiladi. Tadqiqot natijalari dasturiy ta'minotni ishlab chiquvchilarga

loyihalash naqshlarini samarali qo'llash va dasturiy ta'minot sifatini oshirishga yordam

beradi.

FOYDALANILGAN ADABIYOTLAR

1. Karimberdiyevich, O. M., & Abdulaziz o‘g‘li, Y. M. (2024). NEYRO

KOMPYUTERLAR. YANGI O ‘ZBEKISTON, YANGI TADQIQOTLAR JURNALI,

1(5), 19-27.

2. Karimberdiyevich, O. M., & Abdulaziz o‘g‘li, Y. M. (2024). K-YAQIN QO'SHNI

ALGORITMI. IZLANUVCHI, 1(1), 122-124.

3. Abdulaziz o'g'li, Y. M. (2025). WPFDA ANIMATSIYA YARATISHNI

QO’LLANISHI. MODERN PROBLEMS IN EDUCATION AND THEIR SCIENTIFIC

SOLUTIONS, 1(4), 172-175.

4. Abdulaziz o’g’li, Y. M. (2025). MOLIYA VA HISOB–KITOB ILOVALARIDA WPF

BILAN ISHLASH. MODERN PROBLEMS IN EDUCATION AND THEIR

SCIENTIFIC SOLUTIONS, 1(4), 189-193.

5. Karimberdiyevich, O. M. (2024). NEYROEMULYATORLAR VA ULARNING

QO'LLANILISHI. YANGI O ‘ZBEKISTON, YANGI TADQIQOTLAR JURNALI, 1(5),

82-89.

6. Van Rossum, G., & Drake, F. L. (2010). Python 3 Reference Manual. CreateSpace.

7. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley.

8. Martin, R. C. (2002). Agile Software Development, Principles, Patterns, and

Practices. Prentice Hall.

 Ustozlar uchun pedagoglar.org

85-son 7–to’plam Dekabr-2025 Sahifa: 32

9. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). Pattern-

Oriented Software Architecture, Volume 1: A System of Patterns. John Wiley & Sons.

10. Muller, P. (2002). The C3 Superclass Linearization. Proceedings of the 2nd

International Conference on Object-Oriented Programming and Systems.

11. Python Software Foundation. (n.d.). The Python Language Reference. URL:

https://docs.python.org/3/reference/

12. Metsker, S. J. (2001). Design Patterns in Python. Addison-Wesley.

13. Svetlik, M. (2019). Object-Oriented Programming in Python: From Beginner to

Pro. Manning Publications.

14. Meyer, B. (1997). Object-Oriented Software Construction (2nd ed.). Prentice Hall.

https://docs.python.org/3/reference/

