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Annotatsiya. Ushbu maqolada kesmaning ikki chetida buziladigan ikkinchi tartibli
oddiy differensial tenglama uchun chegaraviy masalalar bayon gilingan va bu masala
yechimi Grin funksiyalar usuli bilan topilgan.

Kalit so‘zlar: buziladigan tenglama, chegaraviy masala, Grin funksiya, Gilbert
teoremasi.

Kirish

Hozirgi kunda differensial tenglamalar tabiiy va texnik fanlarda keng qo‘llaniladigan
vositalardan biri bo‘lib, ko‘plab fizik, biologik va texnologik jarayonlarning matematik
modellarini qurishda muhim ahamiyatga ega. Xususan, elastiklik nazariyasi [1], balka va
plastinka masalalari [2], issiglik o‘tkazuvchanlik va turli xil texnologik jarayonlar
to‘rtinchi tartibli buziladigan oddiy differensial tenglamalarni tavsiflashda ko’plab
uchraydi [3].

Buziladigan differensial tenglamalarni o‘rganish va yechish bir gancha giyinchiliklar
va murakkabliklarni keltirib chigaradi: aniq yechimlarni topishning murakkabligi, ragamli
usullar bargarorligining zaifligi va chegaraviy shartlarga mos keluvchi yechimlarning
mavjudlik shartlarini aniglash zarurati [4-13].

Shu boisdan ham, buziladigan oddiy differensial tenglamalar uchun yangi usullarni
ishlab chiqish va amaliy masalalarga qo‘llash bugungi kunda dolzarb masalalardan biri

bo‘lib qolmoqda. Ushbu maqolada, buzilish parametriga ega bo‘lgan oltinchi tartibli
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differensial tenglamalarning chegaraviy masalalari nazariy asoslari tahlil gilinadi, yechim
usullari taklif etiladi va ularning samaradorligi ko‘rsatkichlari baholanadi.
Bizga quyidagi
LIy]==(p()y (X)) = f(x),  xe(-11) 1)
tenglama berilgan bo‘lib,
Agar p(x) va f(x) funksiyalar [-1;,1] kesmada uzluksiz bo‘lib, p(-1)=0 va
p(1) =0 bo‘lsa, uholda (1) tenglama kesmaning ikki chetida buziladigan oddiy defferensial
tenglama deyiladi.
Ko‘p hollarda p(x) funksiya
P(X) > py(x=1)" (x+1)”
deb garaladi.
p(x) funksiya x=-1 va x=1 da 0 ga aylanish tartibiga garab, (1) tenglama
uchun chegaraviy masalalar turlicha qo‘yiladi.

Agar (1) tenglama uchun u yoki bu shartlar bilan qo‘yilgan chegaraviy

masalaning yechimi
y(x = j G(x,5)f(s)ds (2)
-1

formula bilan aniglansa, u holda G(x,s) funksiya o‘sha masalaning Grin funksiyasi
deyiladi.
Quyidagi chegaraviy masalalarni garaylik;
1-masala (-1,1) oraligda —(p(x)y (x)) = f(x) (3) tenglamani ganoatlantiradigan
hamdea, (P()y (¥))/,.,=0,  yB)=0 (4)
chegaraviy shartlarni bajaradigan y(x) funksiya topilsin.

Ma’lumki, Grin funksiya usuli yordamida masala yechimi qidirilganda avvalo

berilgan teoremaga umumiy yechim topiladi. U quyidagi ko‘rinishda bo‘ladi.
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Ly (x)= C, )

X

—-y(x) = ijd—t+C

Endi {(3),(4)} masala uchun ganday G uchun funksiya tuzish kerak degan savol
tug“iladi.
(5) umumiy yechimni (4) chegaraviy shartlarga bo‘ysundiramiz.
(P(X)Y (¥))/,_,=0
chegaraviy shartlarga ko‘ra C, =0, y(x) =0 shartlarda esa ekanligi kelib chigadi.

Bundan ko‘rinadiki (1) tenglamaga mos (4) shartlarni ganoatlantiruvchi yechim

y(x)=0 bo‘ladi. {(3),(4)} masalaning yechimini toppish uchun oddiy Grin funksiyasi

quramiz.
Bir jinsli tenglama umumiy yechimidan foydalanib Grin funksiyasini
I (t) -1<x<s
G(x,8) = 1P
B I (t) B,, s<x<1

ko‘rinishida izlaymiz.
Bu yerda A, A,, B, B,lar noma’lum chegaraviy shartlardan foydalanib
quyidagilarni topamiz.
A=0 B,=0

A, -1<x<s
Gx.5)= Blji, s<x<1
1 P(D)

Grin funksiyasi xossalariga ko‘ra quyidagilarni hosil gilamiz.

¢ odt

-B . [
AR
S
b6 PO

=
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¢ dt
B =1 =|—
1 %150
Topilgan giymatni o‘rniga go‘yib Grin funksiyasini to‘liq yozib olamiz.
%, -1<x<s
G(x,s) = ip
i, s<x<1
1 P(t)

Gilbert teoremasiga ko‘ra masalaning yechimi quyidagicha topiladi.

y()j(j )f()d+j(j o) fEs

-1 1

2-masala. (-1,1) oraliqda

LIy]=~(p(X)y (x)) = f(x) 3
tenglamani hamda
y(D=0, (P(X)Y (¥))/,, =0 (6)

Chegaraviy shartlarni ganoatlantiruvchi y(x) funksiya topilsin.

Masalaning yechimini Grin funksiya usuli yordamida gidiramiz. (3)

tenglamaga bir jinsli tenglamaning yechimi,
¢ dt
X)=C, | —+C
9-Cf3
(6) chegaraviy shartlardan C, =0, C,=0 ekanligi kelib chigadi. Bundan y(x)=0

bo‘lib, oddiy Grin funksiyasi quramiz.
Bir jinsli tenglama umumiy yechimidan foydalanib, Grin funkiysaini

quyidagi ko‘rinishda yozamiz

X

-1<x<s
. Jro
(x,5) =
BI B,, s<x<1
(t)
Bunda A, A, B, B, lar nomalum.
Grinfunksiyasining shartlaridan, G(-L1s)=A,=0, p(x)G,(xs)/,,=B,=0

bo‘ladi. Bundan
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Alj 20 -1<x<s

B,, s<x<1

G(x,8) =

Grin funksiyasinining xossalaridan foydalansak,

M 20
1
"*ﬁ—@
¢ odt
=1 B.=—[—
A A ()

Demak, Grin funksiyasining to‘liq ko‘rinishi quyidagicha bo‘ladi:

d(f[), -1<x<s

st -| 7
- —, s<x<1

% p()

Gilbert teoramasiga ko‘ra {(3), (6)} masalaning yechimi ushbu ko‘rinishda topiladi:
X (s 1/ x dt

y(x)=- ( J (s)ds [ —J f (s)ds
J p(t) J % P(t)

3-masala. (-11)oraligda L[y]=-(p(x)y (x)) = f(x)  (3) tenglamani hamda

(POYY () /1 =0, (P(X)Y (X)), =0, (7)
chegaralarni ganoatlantiruvchi y(x) funksiya topilsin. (3) tenglamaga mos bir jinsli

tenglamaning umumiy yechimi
¢ odt
x)=C, | —+C, 3
y(x) j o0 (3)

bo‘ladi.
(7) chegaraviy shartlarga ko‘ra C, =0bo‘lib, y=C, =0 bo‘ladi va umumlshgan

Grin funksiyasi tuziladi. Buning uchun y(x)=C,yechimni normallashtiramiz. Bunda

L bodi _ 1011
yo(X)—ﬁbo lib, L(y) = y,(X)y,(s) = NN 2bo ladi.
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Endi bir jinsli bo‘lmagan —(p(x)y (x)) :% tenglamaning umumiy yechimini
topamiz.
o1
(P(X)y(x)) =3

POV =2 x+C,

_lx+Cl (8)
y'(x) = 000

(C,—t)dt
y(x) = j TR

(8) yechimdan foydalanib, Grin funksiyasini quyidagi ko‘rinishda izlaymiz.

I(A p(tt))dt A, ~1<x<s
G(x,8)=4"
I(B i —hdt s<x<1
2p(t) il

Bunda A, A, B, B, lar nomalumlar.

Chegaraviy  shartlardan  foydalanib, quyidagilarni topamiz.

(p(¥)y (x))/,, =0 ekanligidan B =1, (p(x)y (x))/,_, =0 ekanligidan A =-1 ekanligi kelib

chigadi.
I (1+t)dt
G(x.s) = 2p(t)
Ia tdt
TOR

Grin funksiyasining xossalaridan

_j (1+t)dt I (1- t)dt
% 2p(t) 2p(t) >

Lt
0]

tenglikni xosil qilamiz va Grin funksiyasi formulasiga qo‘yamiz.

Azsz+
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1+t)dt ¢ dt
I‘” +]

N EETOREY 0N

f (-t
2p(t) &

2

1
Noma’lum o‘zgarmas B, ni _[G(x,s)dx =0shartdan topamiz.

-1

[ _fd+tdt a-tdt B
I[Izp(t) & 1p(t)j jU 20() de_o

-1 1

) f (L+)(—x)dt I 2(s+D)dt | I WXt g o

S 2p®) 2p(t) 5 2p(®)

2I32+JS-—(1+t)(s—x)+2(s.+1)+(1+t)(s—x) dx = 0
° 2p(t)
:_j (s+1)dt
° 2p(t)
:ia—gm
5 2p(t)
I( +t)dt j-(l—s)dt
Gx) = 2p(t) 4 2p()
’ ia t)dt j(s+1)dt
5 2p) 7 2p()
yoki,
J-(1+x)dx j(l—s)dx
Gx )= 2p(x) < 2p(x)
' ‘f (L+s)dx .X[(l—x)dx
5 2p(x) % 2p(x)

ko‘rinishida yozish mumekin.

Gilbert teoremasiga ko‘ra {(3),(7)} masalaning yechimi quyidagicha bo‘ladi:

[ p@+s)dx  F@A-x)dx i f@exdx | ¢ @-s)dx
Y(X)—Il( J; 2000 +'[1 2000 J+(S)ds+.![ .[1 2000 +_[1 2500 Jf(s)ds
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