
   Ustozlar uchun                           pedagoglar.org 

86-son  4–to’plam  Dekabr-2025                  Sahifa:  43 

SHTURM-LIUVILL MASALASI 

Azizov Muzaffar Sulaymonovich  

FarDU,matematik analiz va differensial tenglamalar  

kafedrasi katta o‘qituvchisi 

Vahobjonova Madina Xomidjon qizi  

Yusubjonova Madinabonu Dilshod qizi  

FarDU,Matematika yo‘nalishi 3- bosqich talabalari 

Annotatsiya.Ushbu maqolada Fredgolm integral tenglamasi uchun chegaraviy 

masala bayon qilingan va bu masala yechimi Grin funksiyalar usulida topilgan. 

Kalit so‘zlar.chegaraviy masala,Grin funksiya,Gilbert teoremasi,Fredgolm integral 

tenglamasi . 

                                                  Kirish 

Shturm–Liuvill masalalari matematik fizika, kvant mexanikasi, tebranishlar va 

to‘lqinlar nazariyasi kabi sohalarda uchraydigan fundamental masalalardan biridir. Ushbu 

masalalar ko‘pincha ikkinchi tartibli chiziqli differensial tenglamalar va ularga 

qo‘yiladigan chegaraviy shartlar orqali ifodalanadi. Shturm–Liuvill operatorining spektral 

xususiyatlari – ya’ni o‘z qiymatlari va o‘z funksiyalari – tizimlarning tabiiy chastotalari va 

normal rejimlarini tahlil qilishda asosiy rol o‘ynaydi. 

Maqsadimiz ushbu chegaraviy masalani Fredgolm integral tenglamasiga keltirib, 

yechimni Grin funksiyasi yordamida izohlash va uni topish usullarini tahlil qilishdan 

iborat. Grin funksiyasi yordamida chegaraviy masala yechimini integral ko‘rinishda 

ifodalash mumkin, bu esa nazariy tahlilni soddalashtirish bilan birga amaliy hisoblashlar 

uchun qulay vosita bo‘lib xizmat qiladi. Tadqiqot davomida Gilbert fazolari va tegishli 

teoremalardan, xususan Fredgolim teoremasidan foydalanamiz. 
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Ushbu maqolada Shturm–Liuvill masalasini Grin funksiyasi usuli orqali yechishga 

qaratilgan izohli tahlil keltiriladi, bu esa o‘quvchilarga va tadqiqotchilarga mavzuni 

chuqurroq o‘zlashtirishda yordam beradi 

 

Bizga quyidagi masala berilgan bo‘lsin. 

                                 ( ) ( ) ( ) ( ) 0L y p x y x q x y x        (1)  

         ( 1) 0p   , (1) 0p         (2)                 0( ) 1 1p x p x x
 

     ,     0,1  . 

  parametrning ma’lum qiymatlarida shunday ( )y x  tenglama topilsinki u (1) 

tenglamani qanoatlantirsin va (2) shartlarni bajarsin. 

Bu yerda ( )p x va ( )q x -berilgan malum funksiyalar. ( ) 0p x    , ( ) 0q x   ,   1,1x 

va  -sonli parametr. 

       Odatda {(1),(2)}masalani Shturm-Luivill masalasi yoki boshqacha Spektral 

masala deb ham ataladi.Avvalo {(1),(2)} masala   parametrning qanday qiymatlarida 

yechimga ega ekanligini tekshiramiz.Buning uchun (1) tenglamani  

                                     ( ) ( ) ( ) ( )p x y x q x y x    

Ko‘rinishda yozib olamiz va uning har ikki tomonini ( )y x ga ko‘paytirib  1,1x   

kesma bo‘yicha integrallaymiz. 

                               
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   
     bundan       

                                

1 1

2 2

1 1

( )( ( )) ( ) ( )p x y x dx q x y x dx
 

                          (3)  

hosil bo‘ladi. 

(3) tenglikdan ko‘rinadiki      0   
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1. 0   bo‘lsin. 

U holda (1) tenglama 

                                                 ( ) ( ) 0p x y x    

ko‘rinishga keladi.Bu tenglamaning umumiy yechimi 

                                                
1( ) ( )p x y x C        

                                                1( )
( )

C
y x

p x
   

                                                1 2

1

( )
( )

x
dt

y x C C
p t



   

ko‘rinishda aniqlanadi.Bu umumiy yechimni (2) shartga bo‘ysundirib 

                                               1 2

1

( 1) 0
( )

x
dt

y C C
p t



        ,        
2 0C   

                                                

1

1(1) 0
( )

x

dt
y C

p t
        ,       1 0C   

Bundan esa 0  bo‘lganda  

                                                ( ) 0y x   

ekanligi kelib chiqadi. 

Bundan xulosa qilamizki,{(1),(2)} masala 0  bo‘lgandagina noldan farqli ( )y x

funksiya mavjud bo‘ladi. 

2. 0  bo‘lsin. 

                                                  ( ) ( ) ( ) ( )p x y x q x y x f x                           (4 ) 

tenglamani va (2) shartlarni qaraymiz. 
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                                                    ( ) ( ) ( ) ( )p x y x q x y x f x                  (4) 

                                                  ( 1) 0y   , (1) 0y                                                  (2) 

{(4),(2)} masala uchun Grin funksiyasini tuzamiz. 
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                                                       (5) 

ko‘rinishida izlaymiz. 

Chegaraviy shartlarga ko‘ra 
2 0A  ,

2 0B  ekanligi kelib chiqadi.Buni hisobga olsak 

Grin funksiyasi 
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ko‘rinishga keladi.Grin funksiyasi uchun (1),(3) shartlarga asosan x s bo‘lganda  
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algebraik tenglamalarni sistemasiga ega  bo‘lamiz.Bu sistemani yechib ,quyidagilarni 

topamiz. 
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Topganlarimizni (6) ga qo‘yib masalaning Grin funksiyasini quyidagi ko‘rinishda 

topamiz. 
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Gilbert teoremasiga ko‘ra masalaning yechimi  
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                 ( ) ( ) ( )z x q x y x , ( , ) ( , ) ( ) ( )K x s G x s q x q s  

                                                           
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( ) ( , ) ( )z x K x s z s ds


                       (7) 

(7) simmetrik yadroli Fredgolm integral tenglamasi deyiladi. 
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