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Annotatsiya.Ushbu magolada Fredgolm integral tenglamasi uchun chegaraviy

masala bayon gilingan va bu masala yechimi Grin funksiyalar usulida topilgan.

Kalit so‘zlar.chegaraviy masala,Grin funksiya,Gilbert teoremasi,Fredgolm integral

tenglamasi .
Kirish
Shturm-Liuvill masalalari matematik fizika, kvant mexanikasi, tebranishlar va
to‘lginlar nazariyasi kabi sohalarda uchraydigan fundamental masalalardan biridir. Ushbu
masalalar ko‘pincha ikkinchi tartibli chizigli differensial tenglamalar va ularga
qo‘yiladigan chegaraviy shartlar orqali ifodalanadi. Shturm—Liuvill operatorining spektral

Xususiyatlari — ya’ni o‘z qiymatlari va o‘z funksiyalari — tizimlarning tabiiy chastotalari va

normal rejimlarini tahlil gilishda asosiy rol o‘ynaydi.

Magsadimiz ushbu chegaraviy masalani Fredgolm integral tenglamasiga keltirib,
yechimni Grin funksiyasi yordamida izohlash va uni topish usullarini tahlil gilishdan
iborat. Grin funksiyasi yordamida chegaraviy masala yechimini integral ko‘rinishda
ifodalash mumkin, bu esa nazariy tahlilni soddalashtirish bilan birga amaliy hisoblashlar
uchun qulay vosita bo‘lib xizmat qiladi. Tadqiqot davomida Gilbert fazolari va tegishli

teoremalardan, xususan Fredgolim teoremasidan foydalanamiz.
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Ushbu maqolada Shturm—Liuvill masalasini Grin funksiyasi usuli orgali yechishga
qaratilgan izohli tahlil keltiriladi, bu esa o‘quvchilarga va tadqiqotchilarga mavzuni

chuqurroq o‘zlashtirishda yordam beradi

Bizga quyidagi masala berilgan bo‘lsin.
L[y]=(P0)Y'(x) +29()y()=0 (1)

p(-D)=0,pM)=0 (2 p(X)=po(x-1)" (x+1)" , ae(0,1).

A parametrning ma’lum qiymatlarida shunday y(x) tenglama topilsinki u (1)

tenglamani ganoatlantirsin va (2) shartlarni bajarsin.

Bu yerda p(x)vaq(x)-berilgan malum funksiyalar. p(x)>0 ,q(x)>0, xe[-11]
va A-sonli parametr.
Odatda {(1),(2)}masalani Shturm-Luivill masalasi yoki boshgacha Spektral

masala deb ham ataladi.Avvalo {(1),(2)} masala A parametrning ganday giymatlarida

yechimga ega ekanligini tekshiramiz.Buning uchun (1) tenglamani

(P()Y'(X)) ==2G(X) y(X)

Ko‘rinishda yozib olamiz va uning har ikki tomonini y(x) ga ko‘paytirib x €[-11]
kesma bo‘yicha integrallaymiz.
1 , 1
j [( P(X)Y'(x)) y(x)}dx =-1 j q(x)y(x)dx bundan
-1 -1
1 1

[ POOY () dx = 2 a(x)y* (x)dx 3)

-1
hosil bo‘ladi.

(3) tenglikdan ko‘rinadiki  4>0
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1. =0 bo‘lsin.

U holda (1) tenglama

(P()Y'(x)) =0
ko‘rinishga keladi.Bu tenglamaning umumiy yechimi

P(X)y'(x)=C,

i _ C1
y'(x) = o(x)
y()=C,|

ko‘rinishda aniglanadi.Bu umumiy yechimni (2) shartga bo‘ysundirib

¢ odt
y-)=C|—=+C,=0 , C,=0
1:“1 p(t) 2 2
y()=C j . C,=0
(t)
Bundan esa 4 =0bo‘lganda
y(x)=0

ekanligi kelib chigadi.

Bundan xulosa gilamizki,{(1),(2)} masala A >0bo‘lgandagina noldan fargli y(x)

funksiya mavjud bo‘ladi.

2. A>0Dbo‘lsin.

(P()Y'(¥) ==2q(x)y (x) = f (x) 4)

tenglamani va (2) shartlarni garaymiz.
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(P()Y'(¥) ==2q(X)y (¥) = f (x) 4)

y (-)=0,y 1)=0 (2)

{(4),(2)} masala uchun Grin funksiyasini tuzamiz.

AJ
G(xs) = PO ©)

pra) 2

ko‘rinishida izlaymiz.

Chegaraviy shartlarga ko‘ra A, =0, B, =0ekanligi kelib chigadi.Buni hisobga olsak

Grin funksiyasi

X

AJ P

G(X’S) - dt (6)

iﬁﬁi

ko‘rinishga keladi.Grin funksiyasi uchun (1),(3) shartlarga asosan X =S bo‘lganda

dt
A&I p(t) p(t)
B, A __1
p(s) p(s) p(s)

algebraik tenglamalarni sistemasiga ega bo‘lamiz.Bu sistemani yechib ,quyidagilarni

topamiz.
[t ot
p(t) 5 P(t)
— S , B — -1
Ai 1£ 1 1£
% p(t) % p(t)
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Topganlarimizni (6) ga qo‘yib masalaning Grin funksiyasini quyidagi ko‘rinishda
topamiz.
o
. PO

T — -1<x<s
I dt -, p(t)

G(x,s) =

Gilbert teoremasiga ko‘ra masalaning yechimi

y(x) =—4 [ G(x,5)a(s)y(s)ds

Ja()y() = =2 Ja()a(s)G(x,$)\/a(s) y(s)ds
2(x) =4/a() y(x), K(x,8) = G(x,8)y/q(x)q(s)

H=-A

z(x) = ,uj K(x,s)z(s)ds (7)

(7) simmetrik yadroli Fredgolm integral tenglamasi deyiladi.
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