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CHEGARADA BUZILADIGAN YUQORI TARTIBLI DIFFERENSIAL
TENGLAMALAR UCHUN CHEGARAVIY MASALA

Azizov Muzaffar Sulaymonovich

FarDU, matematik analiz va differensial tenglamalar
kafedrasi katta o‘gituvchisi;

Uraimova Sehriyora G¢ulomjon qizi

FarDU, Matematika yo‘nalishi 3-bosgich talabasi

Annotatsiya. Ushbu magolada kesmaning ikki chetida buziladigan to‘rtinchi tartibli
oddiy differensial tenglama uchun chegaraviy masalalar bayon gilingan va bu masala
yechimi Grin funksiyalar usuli bilan topilgan.

Kalit so‘zlar:buziladigan tenglama, chegaraviy masala, Grin funksiya, Gilbert
teoremasi.

Kirish

Hozirgi kunda differensial tenglamalar tabiiy va texnik fanlarda keng qo‘llaniladigan
vositalaridan biri bo‘lib, ko’plab fizik, biologik va texnologik jarayonlarning matematik
modellarini qurishda muhim ahamiyatga ega. Xususan, elastiklik nazariyasi [1], balka va
plastinka masalalari [2], issiglik o’tkazuvchanlik va turli xil texnologik jarayonlar
to’rtinchi tartibli buziladigan oddiy differensial tenglamalarni tavsiflashda ko‘plab
uchraydi [3].

Buziladigan differensial tenglamalarni o‘rganish va yechish bir gancha giyinchiliklar
va murakkabliklarni keltirib chigaradi: aniq yechimlarni topishning murakkabligi, ragamli
usullar bargarorligining zaifligi va chegaraviy shartlarga mos keluvchi yechimlarning
mavjudlik shartlarini aniglash zarurati [4-13].

Shu boisdan ham, buziladigan oddiy differensial tenglamalar uchun yangi usullarni
ishlab chigish va amaliy masalalarga go‘llash bugungi kunda dolzarb masalalardan biri

bo’lib golmoqgda. Ushbu magolada, buzish parametriga ega bo‘lgaan to‘rtinchi tartibli
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differensial tenglamalarning chegaraviy masalalari nazariy asoslari tahlil gilinadi, yechim
usullari taklif etiladi va ularning samaradorligi ko’rsatkichlari baholanadi.

Bizga quyidagi

(n

LIy)= (-0 (P()Y " (x)) " = 1 (x), xe(0:1) @

oddiy differensial tenglama berilgan bo‘lsin, bu yerda n-berilgan natural son, p(x)
va f (X) lar esa [0;1] oraligda aniglangan va uzluksiz funksiyalar bo‘lib,
p(0)=0, 0<x<1daesa p(x)= p,x* tengsizlik o‘rinli, bunda p,=const>0, 0<x<1
daesa p(x)> p,x” tengsizlik o‘rinli, bunda p, =const>0, 0<a<2n.

Bu tenglama uchun chegaraviy shartlar « ning giymatiga garab turlicha go‘yiladi.
Chegaraviy shartlar, masalan,

0<a <n bo‘lganda
$(0)=0, j-0n-[a]
R e B PG
y™(1)=0, m=0,n-1
ko‘rinishda, n < a <2n bo‘lganda esa
1y (0) k0, j=0,(n-1)+(n-[a]); (3)

y(m)(l):o, m=0,n-1

ko‘rinishda qo‘yilishi mumkin.
Agar (1) tenglama uchun (2) yoki (3) shartlar bilan qo’yilgan chegaraviy masalaning

yechimi
V()= J,6(x.5)F (5)ds @
formula bilan aniglansa, u holda G(x,t) funksiya o‘sha masalaning Grin funksiyasi
deyiladi.
n=2 va 2<a <4 deb faraz qilib quyidagi chegaraviy masalani quraylik.

Masala: Ushbu L[y]=(p(x)y") = f(x), xe(02) 5)
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differensial operatorning
y(0)=0, y'(0)=0, y"(1)=0, y"(1)=0 (6)
chegaraviy shartlarni ganoatlantiruvchi Grin funksiyasini tuzing.

Yechish. L[y]=0 tenglamaning umumiy yechimini topamiz
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p(x)y"(x)=Cx+C, bu tenglikdan y"(x)= GX+C ekanligi kelib chigadi.

p(x)

y'(x)=C, «_tdt +C, i+C3

op(t) oY)
y(x)=C'[X{|‘O e )dz}duc [ D‘ (z)}dHC X+C,

y(x):Clj' o) dzJ' dt+ CI fdt+Cx+C
Demak,

y(x CIXZ _Z)d +C, ( )dz+Cx+C (7)

p(z) ° p(z)
umumiy yechimni y(0)=0, y'(0)=0, y"(1)=0, y"(1)=0 chegaraviy shartlarga
bo‘ysundirsak, C,=C,=C,=C, =0 larga ega bo‘lamiz. Demak, chegaraviy shartlarni
faqat trivial yechim, ya’ni y(x)=0 funksiya ganoatlantiradi. Shuning uchun oddiy Grin

funksiyasini quyidagi ko‘rinishda izlaymiz:

a1JOXZ X_Z)dz+a (X )dz+a3x+a4, X<S

() p()

G(x,5)= y (8)
le-X bJ. dz+bx+b4, X>$

Chegaraviy shartlarga ko‘ra a, =0, a, =0, b, =0, b, =0 ekanligi kelib chigadi. Buni

hisobga olsak, Grin funksiyasi
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202y o P g s
ai.[o p(z) d .[ )d’

b,Xx+Db,, X>S

G(x,s)=

ko’rinishga keladi.Grin funksiyasi uchun birinchi va uchinchi shartlarga asosan x =5

bo’lganda

)dz+aj )dz

b, +b, —aijsz 0

(2)

b,=a O—dz+a SLdz

(z)  “e(z)

p(s)-0= p(S)'£a1 p(ss)+a2 p(18)J
—a, =1

algebraik tenglamalar sistemasiga ega bo‘lamiz. Bu sistemani yechib, quyidagilarni

I,

topamiz:

a=-1 a =s, b3=sjos:_—zd , b4—JSMdz

@) ()

Topilganlarni (8) ga qo‘yib (5)-masalaning Grin funksiyasini quyidagi ko’rinishda

topamiz:
x2(z—Xx) - xs(x—2) , (<s
G(x8)= . p(2) ) p(2) o
| jz—z(z_s)dz+JsX(S_z)dz, X>S
° p(2) ° p(2)
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