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Annotatsiya. Ushbu maqolada kesmaning ikki chetida buziladigan to‘rtinchi tartibli 

oddiy differensial tenglama uchun chegaraviy masalalar bayon qilingan va bu masala 

yechimi Grin funksiyalar usuli bilan topilgan.  

Kalit so‘zlar:buziladigan tenglama, chegaraviy masala, Grin funksiya, Gilbert 

teoremasi. 

Kirish 

Hozirgi kunda differensial tenglamalar tabiiy va texnik fanlarda keng qo‘llaniladigan 

vositalaridan biri bo‘lib, ko’plab fizik, biologik va texnologik jarayonlarning matematik 

modellarini qurishda muhim ahamiyatga ega. Xususan, elastiklik nazariyasi [1], balka va 

plastinka masalalari [2], issiqlik o’tkazuvchanlik va turli xil texnologik jarayonlar 

to’rtinchi tartibli buziladigan oddiy differensial tenglamalarni tavsiflashda ko‘plab 

uchraydi [3].  

Buziladigan differensial tenglamalarni o‘rganish va yechish bir qancha qiyinchiliklar 

va murakkabliklarni keltirib chiqaradi: aniq yechimlarni topishning murakkabligi, raqamli 

usullar barqarorligining zaifligi va chegaraviy shartlarga mos keluvchi yechimlarning 

mavjudlik shartlarini aniqlash zarurati [4-13]. 

Shu boisdan ham, buziladigan oddiy differensial tenglamalar uchun yangi usullarni 

ishlab chiqish va amaliy masalalarga qo‘llash bugungi kunda dolzarb masalalardan biri 

bo’lib qolmoqda. Ushbu maqolada, buzish parametriga ega bo‘lgaan to‘rtinchi tartibli 
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differensial tenglamalarning chegaraviy masalalari nazariy asoslari tahlil qilinadi, yechim 

usullari taklif etiladi va ularning samaradorligi ko’rsatkichlari baholanadi.  

Bizga quyidagi 

  ( ) ( ) ( ) ( )( )
( )

( ) ( )1 , 0;1
nn n

L y p x y x f x x= − =                            (1) 

oddiy differensial tenglama berilgan bo‘lsin, bu yerda n-berilgan natural son, ( )p x  

va ( )f x  lar esa  0;1  oraliqda aniqlangan va uzluksiz funksiyalar bo‘lib, 

( )0 0, 0 1p x=    da esa ( ) 0p x p x  tengsizlik o‘rinli, bunda 0 0,p const=   0 1x   

da esa ( ) 0p x p x  tengsizlik o‘rinli, bunda 0 0, 0 2p const n=    . 

Bu tenglama uchun chegaraviy shartlar   ning qiymatiga qarab turlicha qo‘yiladi. 

Chegaraviy shartlar, masalan, 

0 n   bo‘lganda 

( ) ( )  0 0, 0, 1;
j

y j n = = − −  

(2) 

( ) ( )1 0, 0, 1
m

y m n= = −  

ko‘rinishda, 2n n   bo‘lganda esa 

( ) ( ) ( )  ( )| 0 | , 0, 1 ;
j

y j n n  + = − + −                               (3) 

( ) ( )1 0, 0, 1
m

y m n= = −  

ko‘rinishda qo‘yilishi mumkin. 

 Agar (1) tenglama uchun (2) yoki (3) shartlar bilan qo’yilgan chegaraviy masalaning 

yechimi 

( ) ( ) ( )
1

0
,y x G x s f s ds=                                             (4) 

formula bilan aniqlansa, u holda ( ),G x t  funksiya o‘sha masalaning Grin funksiyasi 

deyiladi. 

 2 2 4n va =    deb faraz qilib quyidagi chegaraviy masalani quraylik.  

Masala: Ushbu    ( )( ) ( ) ( ), 0,1L y p x y f x x= =                                                        (5) 

( ) ( )  0 , , 1;
k

y j n n + = − −
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differensial operatorning 

( ) ( ) ( ) ( )0 0, 0 0, 1 0, 1 0y y y y  = = = =                                                       (6) 

chegaraviy shartlarni qanoatlantiruvchi Grin funksiyasini tuzing.  

Yechish.   0L y =  tenglamaning umumiy yechimini topamiz 

( ) ( )( )

( ) ( )( ) 1

0p x y x

p x y x C

 =

 =

 

( ) ( ) 1 2p x y x C x C = +  bu tenglikdan ( )
( )

1 2c x c
y x

p x

+
 =  ekanligi kelib chiqadi. 

( )
( ) ( )1 2 3

0 0

x xtdt dt
y x C C C

p t p t
 = + +   

( )
( ) ( )1 2 3 4

0 0 0 0

x t x tz dz
y x C dz dt C dt C x C

p z p z

   
= + + +   

   
     

( )
( ) ( )1 2 3 4

0 0

x x x x

z z

z dz
y x C dz dt C dt C x C

p z p z
= + + +     

Demak, 

( )
( )
( )

( )
( )1 2 3 4

0 0

x xz x z x z
y x C dz C dz C x C

p z p z

− −
= + + +                                                (7) 

umumiy yechimni ( ) ( ) ( ) ( )0 0, 0 0, 1 0, 1 0y y y y  = = = =  chegaraviy shartlarga 

bo‘ysundirsak, 1 2 3 4 0C C C C= = = =  larga ega bo‘lamiz. Demak, chegaraviy shartlarni 

faqat trivial yechim, ya’ni ( ) 0y x   funksiya qanoatlantiradi. Shuning uchun oddiy Grin 

funksiyasini quyidagi ko‘rinishda izlaymiz: 

( )

( )
( )

( )
( )

( )
( )

( )
( )

1 2 3 4
0 0

1 2 3 4
0 0

,

,

,

x x

x x

z x z x z
a dz a dz a x a x s

p z p z
G x s

z x z x z
b dz b dz b x b x s

p z p z

− −
+ + + 


= 

− − + + + 



 

 

            (8) 

Chegaraviy shartlarga ko‘ra 3 4 1 20, 0, 0, 0a a b b= = = =  ekanligi kelib chiqadi. Buni 

hisobga olsak, Grin funksiyasi 
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( )

( )
( )

( )
( )1 2

0 0

3 4

,
,

,

x xz x z x z
a dz a dz x s

p z p zG x s

b x b x s

− −
+ 

= 
 + 

   

ko’rinishga keladi.Grin funksiyasi uchun birinchi va uchinchi shartlarga asosan x s=  

bo’lganda 

( )
( )

( )
( )

( ) ( )

( ) ( )
( ) ( )

3 4 1 2
0 0

3 1 2
0 0

1 2

1

1

1
0

1

s s

s s

z s z s z
b b a dz a dz

p z p z

z
b a dz a dz

p z p z

s
p s p s a a

p s p s

a

 − −
+ = +




= +

  
  =  + 
  

− =

 

 
 

algebraik tenglamalar sistemasiga ega bo‘lamiz. Bu sistemani yechib, quyidagilarni 

topamiz: 

( )
( )
( )1 2 3 4

0 0
1, , ,

s s z z ss z
a a s b s dz b dz

p z p z

−−
= − = = =   

Topilganlarni (8) ga qo‘yib (5)-masalaning Grin funksiyasini quyidagi ko’rinishda 

topamiz: 

( )

( )
( )

( )
( )

( )
( )

( )
( )

0 0

0 0

,

,

,

x x

z s

z z x s x z
dz dz x s

p z p z
G x s

z z s x s z
dz dz x s

p z p z

− −
+ 


= 

− − + 



 

 
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