

ПОЛИМЕРАЗНАЯ ЦЕПНАЯ РЕАКЦИЯ.

Кахорова Кароматхон Совронбаевна

Преподаватель кафедры Общемедицинских дисциплин Медицинского факультета Наманганского государственного университета

Яндашова Гулирано Элёр кизи

студентка направления Лечебное дело Медицинского факультета Наманганского государственного университета

Аннотация: Полимеразная цепная реакция (ПЦР) — это революционная технология молекулярной биологии, используемая для амплификации определённых последовательностей ДНК. Разработанная Кэри Муллисом в 1983 году, ПЦР стала незаменимым инструментом в генетике, диагностике, судебной экспертизе и биотехнологии. В статье представлен обзор ПЦР, её принципов, методологии, областей применения и современных усовершенствований, а также анализ научной литературы по данной теме. В обсуждении подчёркивается точность, чувствительность и универсальность метода в различных исследованиях и клинической практике.

Ключевые слова: Полимеразная цепная реакция, амплификация ДНК, молекулярная диагностика, генетическое тестирование, Кэри Муллис, термоциклирование, биотехнология, судебный анализ ДНК.

Полимеразная цепная реакция (ПЦР) — это биохимическая технология, позволяющая экспоненциально увеличивать количество определённых фрагментов ДНК. До её появления анализ ДНК требовал трудоёмких и длительных методов клонирования. Внедрение ПЦР преобразовало молекулярную биологию, позволив за считанные часы получать миллионы копий ДНК-фрагмента. Метод основан на принципах репликации ДНК, но проводится in vitro с использованием термостабильной ДНК-полимеразы, синтетических праймеров и контролируемого температурного цикла.

ПЦР играет ключевую роль в клинической диагностике — от выявления инфекционных заболеваний до идентификации генетических нарушений и подбора персонализированной терапии. В судебной экспертизе метод используется для установления личности по ДНК-профилю, а в экологии — для мониторинга биоразнообразия. Возможность работы с минимальными количествами ДНК сделала ПЦР незаменимым инструментом современной биологии.

Полимеразная цепная реакция (ПЦР) — это мощный метод молекулярной биологии, позволяющий амплифицировать (увеличивать количество копий) специфические участки ДНК в пробирке (in vitro). Метод был разработан Кэри Муллисом в 1983 году и стал революционным инструментом в биотехнологии, генетике, медицине и других областях. За это открытие Муллис получил Нобелевскую премию по химии в 1993 году. ПЦР позволяет создавать миллионы копий определённого фрагмента ДНК из минимального количества исходного материала, что делает её незаменимой в исследованиях и диагностике.

Принцип работы ПЦР

ПЦР основана на повторении циклического процесса, который включает три основных этапа: денатурацию, отжиг праймеров и элонгацию. Эти этапы происходят в термостабильном приборе (термоциклере), который точно контролирует температуру. Каждый цикл удваивает количество целевой ДНК, что приводит к экспоненциальному увеличению её количества.

Этапы ПЦР:

Денатурация (94–98°C, 20–30 секунд):

- Двухцепочечная молекула ДНК нагревается до высокой температуры, чтобы водородные связи между комплементарными цепями разорвались. В результате образуются две одноцепочечные молекулы ДНК, которые служат матрицей для синтеза новых цепей.
- Высокая температура разрушает вторичные структуры ДНК и делает её доступной для праймеров.

Отжиг праймеров (50–65°C, 20–40 секунд):

- Температура снижается, чтобы короткие синтетические олигонуклеотиды (праймеры) могли комплементарно связаться с одноцепочечной ДНК. Праймеры (обычно длиной 18–22 нуклеотида) разработаны так, чтобы соответствовать последовательностям, фланкирующим целевой участок ДНК.
- Температура отжига критически важна: она должна быть достаточно низкой для связывания праймеров, но достаточно высокой, чтобы предотвратить неспецифическое связывание.

Элонгация (72°C, 20–60 секунд):

- Термостабильная ДНК-полимераза (обычно Таq-полимераза, выделенная из бактерии Thermus aquaticus) достраивает новые цепи ДНК, начиная от 3'-конца праймеров. Полимераза добавляет дезоксирибонуклеотидтрифосфаты (dNTPs) к растущей цепи в направлении 5'→3'.
- Время элонгации зависит от длины амплифицируемого фрагмента (примерно 1 минута на 1000 пар оснований).

Эти три этапа повторяются 25—40 раз, что приводит к экспоненциальному увеличению количества целевой ДНК. Например, после 30 циклов одна молекула ДНК может превратиться в более чем миллиард копий (2^{30}).

Компоненты реакционной смеси

Для успешного проведения ПЦР необходимы следующие компоненты:

- Матричная ДНК: Исходный образец, содержащий целевой участок ДНК. Это может быть геномная ДНК, плазмидная ДНК или даже следовые количества ДНК из биологических образцов.
- Праймеры: Два коротких олигонуклеотида (прямой и обратный), которые определяют начало и конец амплифицируемого участка. Праймеры должны быть специфичными, чтобы избежать неспецифической амплификации.
- ДНК-полимераза: Термостабильный фермент, устойчивый к высоким температурам денатурации. Таq-полимераза наиболее распространённый выбор, но существуют и другие, такие как Pfu-полимераза (с более высокой точностью).
- Нуклеотиды (dNTPs): Смесь дезоксирибонуклеотидов (dATP, dTTP, dGTP, dCTP), которые служат строительными блоками для синтеза новых цепей ДНК.

- Буферный раствор: Обеспечивает оптимальный рН и ионный состав (например, содержит ионы Mg^{2+} , необходимые для работы полимеразы).
- Дополнительные компоненты (при необходимости): добавки, такие как DMSO или бетаин, могут использоваться для улучшения амплификации сложных последовательностей (например, с высоким содержанием GC-пар).

Механизм амплификации

Первый цикл: После денатурации матричной ДНК праймеры связываются с комплементарными участками, и полимераза синтезирует новые цепи. На этом этапе образуются цепи, которые длиннее целевого фрагмента, так как полимераза продолжает синтез за пределами участка, ограниченного праймерами.

Второй цикл: Новые цепи также денатурируются, и процесс повторяется. Начинают появляться фрагменты, ограниченные праймерами с обеих сторон.

Последующие циклы: Короткие фрагменты, ограниченные праймерами, становятся доминирующими, так как их синтез более эффективен. После нескольких циклов практически вся амплифицированная ДНК соответствует целевому фрагменту.

Виды ПЦР

Существует множество модификаций ПЦР, адаптированных под разные задачи:

- Классическая ПЦР: Используется для амплификации ДНК с последующим анализом (например, электрофорезом).
- Обратная транскрипционная ПЦР (ОТ-ПЦР): Сначала РНК превращается в комплементарную ДНК (кДНК) с помощью обратной транскриптазы, а затем амплифицируется. Применяется для анализа экспрессии генов.
- Количественная ПЦР (qPCR): Использует флуоресцентные красители или зонды для мониторинга количества ДНК в реальном времени. Позволяет количественно оценить исходное количество матрицы.
- Мультиплексная ПЦР: Одновременная амплификация нескольких участков ДНК с использованием разных пар праймеров.

- Гнездовая ПЦР (Nested PCR): Использует две пары праймеров (внешнюю и внутреннюю) для повышения специфичности.
- ПЦР с горячими стартом: Полимераза активируется только при нагревании, что снижает неспецифическую амплификацию.
- Цифровая ПЦР (dPCR): Разделяет реакционную смесь на тысячи микрокапель, позволяя абсолютное количественное определение ДНК.

Применение ПЦР

ПЦР имеет широкий спектр применений:

Медицинская диагностика:

- Выявление инфекционных заболеваний (например, ВИЧ, гепатит, COVID-19).
- Генетическое тестирование на мутации (например, мутации в генах BRCA1/BRCA2).
 - Диагностика наследственных заболеваний.

Криминалистика:

- Анализ ДНК с мест преступления (например, идентификация по следам крови, волос).
 - Установление родства.

Научные исследования:

- Клонирование генов.
- Секвенирование ДНК.
- Изучение экспрессии генов (с помощью ОТ-ПЦР).
- Анализ филогенетических связей.

Биотехнология:

- Создание генетически модифицированных организмов.
- Разработка диагностических тестов.

Палеогенетика:

- Анализ древней ДНК из археологических образцов.

Преимущества ПЦР

- Высокая чувствительность: Позволяет работать с минимальными количествами ДНК (например, из одной клетки).
- Специфичность: Точный дизайн праймеров обеспечивает амплификацию только целевого участка.
 - Скорость: Результаты можно получить за несколько часов.
 - Универсальность: Применима к любым организмам и типам ДНК.
- Автоматизация: Термостабильные полимеразы и термоциклеры делают процесс простым и воспроизводимым.

Ограничения ПЦР

- Контаминация: Следы чужой ДНК могут привести к ложноположительным результатам. Требуется стерильность и использование контроля.
- Дизайн праймеров: Неправильный выбор праймеров может вызвать неспецифическую амплификацию или отсутствие продукта.
- Качество матрицы: Деградированная или загрязнённая ДНК снижает эффективность.
- Ограниченная длина фрагмента: ПЦР эффективна для амплификации фрагментов до 3–5 тысяч пар оснований; более длинные участки требуют специальных подходов.
- Зависимость от оборудования: Требуется термоциклер и качественные реагенты.

Заключение

ПЦР — это универсальный, высокочувствительный и специфичный метод, который изменил подходы к молекулярной биологии и диагностике. Его простота, скорость и возможность адаптации под разные задачи делают его незаменимым инструментом.

ПЦР обеспечивает быстрый и специфичный синтез целевых фрагментов ДНК. Метод универсален и применим в широком спектре научных и диагностических задач. Современные технологические усовершенствования расширили возможности ПЦР и сделали её доступной в различных областях.

Продолжить разработку мер по минимизации риска контаминации и созданию устойчивых к условиям окружающей среды ПЦР-наборов.

Интеграция ПЦР с технологиями секвенирования нового поколения может улучшить мониторинг патогенов и геномные исследования.

Разрабатывать доступные и портативные ПЦР-устройства для использования в ресурсно-ограниченных регионах, что повысит уровень глобальной диагностики.

Литература.

- 1. Mullis, K., & Faloona, F. (1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. *Methods in Enzymology*, 155, 335–350. https://doi.org/10.1016/0076-6879(87)55023-6
- 2. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., ... & Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. *Science*, 239(4839), 487–491. https://doi.org/10.1126/science.2448875
- 3. Lorenz, T. C. (2012). Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. *Journal of Visualized Experiments*, (63), e3998. https://doi.org/10.3791/3998
- 4. Kubista, M., Andrade, J. M., Bengtsson, M., Forootan, A., Jonák, J., Lind, K., ... & Ståhlberg, A. (2006). The real-time polymerase chain reaction. *Molecular Aspects of Medicine*, 27(2-3), 95–125. https://doi.org/10.1016/j.mam.2005.12.007
- 5. Mackay, I. M., Arden, K. E., & Nitsche, A. (2002). Real-time PCR in virology. *Nucleic Acids Research*, 30(6), 1292–1305. https://doi.org/10.1093/nar/30.6.1292
- 6. Dorak, M. T. (2006). *Real-time PCR*. Taylor & Francis Group. ISBN 9780415377348.
- 7. Espy, M. J., Uhl, J. R., Sloan, L. M., Buckwalter, S. P., Jones, M. F., Vetter, E. A., ... & Smith, T. F. (2006). Real-time PCR in clinical microbiology: applications for routine laboratory testing. *Clinical Microbiology Reviews*, 19(1), 165–256. https://doi.org/10.1128/CMR.19.1.165-256.2006
- 8. Higuchi, R., Fockler, C., Dollinger, G., & Watson, R. (1993). Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. *Bio/Technology*, 11, 1026–1030. https://doi.org/10.1038/nbt0993-1026

- 9. Bartlett, J. M., & Stirling, D. (2003). A short history of the polymerase chain reaction. *Methods in Molecular Biology*, 226, 3–6. https://doi.org/10.1385/1-59259-384-4:3
- 10. Wong, M. L., & Medrano, J. F. (2005). Real-time PCR for mRNA quantitation. *BioTechniques*, 39(1), 75–85. https://doi.org/10.2144/05391RV01