BIR QATLAMLI SUN’IY NEYRON TO‘RLARI: TUZILISH VA QO‘LLANILISHI
Keywords:
sun’iy neyron to‘ri, perseptron, aktivatsiya funksiyasi, og‘irliklar, klassifikatsiya, regressiya, chiziqli ajratish, o‘qitish algoritmi.Abstract
Ushbu maqola bir qatlamli sun’iy neyron to‘rlarining tuzilishi, ishlash prinsiplari va ularning qo‘llanilish sohalarini ilmiy-uslubda yoritadi. Bir qatlamli neyron modellar — sun’iy intellektning eng sodda, ammo nazariy jihatdan muhim arxitekturalaridan biridir. Maqolada perseptron modeli, kirish va chiqish signallari, og‘irliklar, aktivatsiya funksiyalari hamda o‘qitish algoritmlarining mohiyati batafsil ko‘rib chiqiladi. Shuningdek, bir qatlamli neyron to‘rlarining afzalliklari va cheklovlari, ular qo‘llaniladigan amaliy yo‘nalishlar, xususan klassifikatsiya, signalni qayta ishlash va boshqaruv tizimlaridagi o‘rni haqida fikr yuritiladi.
References
Rosenblatt, F. (1958). The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain.
Haykin, S. (2009). Neural Networks and Learning Machines.
Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning. MIT Press.
Bishop, C. (2006). Pattern Recognition and Machine Learning.
Rumelhart, D. (1986). Learning Representations by Backpropagating Errors.
Mitchell, T. (1997). Machine Learning.
James, G., Witten, D., Hastie, T., Tibshirani, R. An Introduction to Statistical Learning.
Hagan, M., Demuth, H., Beale, M. (2014). Neural Network Design.
Zhang, J. (2019). Neural Networks in Classification Tasks.Liu, C. (2020). Applications of Single-Layer Neural Models in Control Systems