FAOLLASHTIRISH FUNKSIYALARI: SIGMOID, TANH, RELU VA BOSHQALAR

Authors

  • Tojimamatov Israil Nurmamatovich Author
  • Karimova Nargizaxon Abdurasul qizi Author

Keywords:

Faollashtirish funksiyasi, Sigmoid, Tanh, ReLU, Leaky ReLU, Softmax, neyron tarmoq, nochiziqlilik, gradient, sun’iy intellekt, chuqur o‘rganish.

Abstract

Ushbu ishda sun’iy neyron tarmoqlarida qo‘llaniladigan asosiy faollashtirish funksiyalari — Sigmoid, Tanh, ReLU hamda ularning turli variantlari tahlil qilinadi. Faollashtirish funksiyalarining mohiyati, ularning matematik modellari, afzallik va kamchiliklari hamda neyron tarmoqning o‘qitilish jarayoniga ta’siri yoritiladi. Shuningdek, zamonaviy chuqur o‘rganish tizimlarida faollashtirish funksiyalarini to‘g‘ri tanlashning ahamiyati asoslab beriladi. Ushbu mavzu sun’iy intellekt modellari samaradorligini oshirishda muhim nazariy va amaliy ahamiyatga ega.

References

1. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536.

2. Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, 9, 249–256.

3. Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. Proceedings of the 27th International Conference on Machine Learning, 807–814.

4. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

5. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

6. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. Proceedings of the IEEE International Conference on Computer Vision, 1026–1034.

7. Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press.

8. Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural networks. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6(2), 107–116.

9. Haykin, S. (2009). Neural Networks and Learning Machines (3rd ed.). Pearson Education.

10. Tojimamatov, I. N., Topvoldiyeva, H., Karimova, N., & Inomova, G. (2023). Grafik ma’lumotlar bazasi. Евразийский журнал технологий и инноваций, 1(4), 75–84.

11. Tojimamatov, I. N., Olimov, A. F., Khaydarova, O. T., & Tojiboyev, M. M. (2023). CREATING A DATA SCIENCE ROADMAP AND ANALYSIS. PEDAGOGICAL SCIENCES AND TEACHING METHODS, 2(23), 242-250.

12. Tojimamatov, I. N., Topvoldiyeva, H., Karimova, N., & Inomova, G. (2023). GRAFIK MA'LUMOTLAR BAZASI. Евразийский журнал технологий и инноваций, 1(4), 75-84.

13. Ne’matillayev, A. H., Abduqahhorov, I. I., & Tojimamatov, I. (2023). BIG DATA TEXNOLOGIYALARI VA UNING MUAMMOLARI. ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ, 19(1), 61-64.

14. Tojimamatov, I., Usmonova, S., Muhammadmusayeva, M., & Xoldarova, S. (2023). DATA MINING MASALALARI VA ULARNING YECHIMLARI. “TRENDS OF MODERN SCIENCE AND PRACTICE”, 1(2), 60-63.

15. Tojimamatov, I., Soliyeva, X., & Israilova, R. (2025). FAYL NOMLARINI QISQARTIRISH ALGORITMLARI. Академические исследования в современной науке, 4(26), 45-52.

16. Nurmamatovich, T. I. (2025). MONGODB DA BIG DATA BILAN ISHLASH USULLARI. YANGI O‘ZBEKISTON, YANGI TADQIQOTLAR JURNALI, 2(8), 792-798.

17. Nurmamatovich, T. I. (2025). MOBIL OPERATSION SISTEMALARNING KELAJAGI. Лучшие интеллектуальные исследования, 44(5), 133-139.

18. Nurmamatovich, T. I., & Umidjon o‘g, M. Z. S. (2025). BERILGANLAR BAZASIDA HAYOTIY SIKL. Лучшие интеллектуальные исследования, 44(5), 169-178.

19. Nurmamatovich, T. I., & Umidjon o‘g, M. Z. S. (2025). MASHINA KODLARI BILAN ISHLASH. Лучшие интеллектуальные исследования, 44(5), 159-168.

20. Nurmamatovich, T. I. (2025). BERILGANLAR BAZASI ADMINISTRATORI. Лучшие интеллектуальные исследования, 44(5), 276-282.

21. Tojimamatov, I. (2025). ADO-NET TEXNOLOGIYASI YORDAMIDA HISOBOTLAR VA FORMALARNI SHAKLLANTIRISH. Академические исследования в современной науке, 4(25), 122-126.

22. Nurmamatovich, T. I. (2025). STATISTIKA SOHASIDA AXBOROT TIZIMLARI VA TEXNOLOGIYALARINI SINTAKSIS TAXLIL QILISH. Лучшие интеллектуальные исследования, 44(4), 157-166.

23. Nurmamatovich, T. I. (2025). AXBOROTLARNI TAQDIM ETISH VA ULAR BILAN ISHLASH. Лучшие интеллектуальные исследования, 44(4), 135-140.

24. Tojimamatov, I., & Abduvaliyev, X. (2025). KO ‘P FOYDALANUVCHILI BBBT ARXITEKTURASI. Инновационные исследования в науке, 4(5), 16-22.

25. Tojimamatov, I., & Xolmurod o‘g, A. O. H. (2025, May). SQL SERVERDA CHEKLASHLAR. In CONFERENCE OF MODERN SCIENCE & PEDAGOGY (Vol. 1, No. 1, pp. 409-413).

Published

2025-12-13

How to Cite

[1]
2025. FAOLLASHTIRISH FUNKSIYALARI: SIGMOID, TANH, RELU VA BOSHQALAR. Ustozlar uchun. 85, 6 (Dec. 2025), 392–399.