SUN’IY NEYRONNING MATEMATIK MODELI VA UNING ELEMENTLARI
Keywords:
sun’iy neyron modeli, matematik model, kirish signallari, vaznlar, aktivatsiya funksiyasi, neyron tarmoqlari, sun’iy intellekt, axborot qayta ishlash, o‘rganish va moslashish.Abstract
Ushbu maqolada sun’iy neyronlarning matematik modeli va uning asosiy elementlari — kirish signallari, vaznlar, yig‘indini hisoblovchi operator va aktivatsiya funksiyasi — ilmiy asosda tahlil qilindi. Biologik neyron faoliyatining soddalashtirilgan matematik modeli yordamida sun’iy intellekt tizimlarida axborotning samarali qayta ishlanishi, o‘rganish va moslashish imkoniyatlari ko‘rib chiqildi. Shuningdek, neyron tarmoqlarining noaniq ma’lumotlarni qayta ishlashdagi ahamiyati va aktivatsiya funksiyalarining turli xil turlari ham yoritildi. Tadqiqot natijalari sun’iy neyron modellarining zamonaviy kompyuter tizimlarida yuqori samaradorlikka erishishida muhim o‘rin tutishini ko‘rsatadi.
References
1. Lutz, A. (2013). Fundamentals of Neural Networks: Principles and Applications. Springer, New York.— Sun’iy neyronlarning asosiy tuzilishi va faoliyat prinsiplari haqida batafsil ma’lumot.
2. Downey, A. (2015). Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence. Addison-Wesley.— Biologik neyronlarni matematik modelga aylantirish va sun’iy neyronlar o‘rganishi.
3. Beazley, D., & Jones, M. (2013). Python Neural Networks and Deep Learning. Packt Publishing.
— Aktivatsiya funksiyalari va neyron modellarining o‘rganish jarayonlari haqida amaliy misollar.
4. Zelle, J. (2010). Artificial Neural Networks: Concepts and Theory. Wiley-IEEE Press.
— Neyron tarmoqlarining moslashuvchanligi va murakkab tizimlarda ishlash qobiliyati.
5. McKinney, W. (2017). Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O'Reilly Media.— Neyronlarning matematik jihatlari, kirish signallari va yig‘indini hisoblash usullari.
6. VanderPlas, J. (2016). Python Data Science Handbook: Essential Tools for Working with Data. O'Reilly Media.— Neyron tarmoqlarining tasniflash va bashorat qilishdagi qo‘llanilishi va matematik asoslari.
7. Tursunaliyeva M.Z. Optimization of network traffic with the help of artificial intelligence based on edge computing: a new methodological approach // Science and Innovation. International Scientific Journal. - 2021. - Vol. 4, No. 9. - P. 76-79. - doi:10.5281/zenodo.17258224.
8. Tursunaliyeva M. Energy efficiency in neural networks: problems of optimizing large models // Science and Innovation. International Scientific Journal. - 2021. - Vol. 4, No. 11. - P. 59-61. - DOI: 10.5281/zenodo.17674536.
9. OpenAI. GPT-4 Technical Report. - 2021. - URL: https://openai.com (accessed: 20.11.2025).