SIR MODELIDAN FOYDALANIB GRIPP EPIDEMIYASINING TARQALISHINI BASHORAT QILISH
Keywords:
gripp, epidemiya, SIR modeli, matematik modellashtirish, infeksion kasalliklar, bashorat, sog‘liqni saqlashAbstract
Ushbu maqolada gripp epidemiyasining tarqalishini SIR modeli asosida matematik jihatdan tahlil qilish ko‘rib chiqilgan. Model orqali aholini kasallanish darajasi, infeksiyaning cho‘qqi nuqtasi va epidemiyaning davomiyligi bashorat qilinadi. Oddiy parametrlar yordamida epidemiyaning rivojlanishi modellashtiriladi. Natijalar sog‘liqni saqlash tizimida chora-tadbirlarni rejalashtirishda yordam berishi mumkin. Shuningdek, SIR modelining afzalliklari va cheklovlari muhokama qilingan.
References
1. Kermack, W. O., & McKendrick, A. G. (1927). A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society.
2. Hethcote, H. W. (2000). The Mathematics of Infectious Diseases. SIAM Review.
3. Allen, L. J. S. (2008). An Introduction to Stochastic Epidemic Models. Springer.
4. Brauer, F., Castillo-Chavez, C., & Feng, Z. (2019). Mathematical Models in Epidemiology. Springer.
5. Diekmann, O., Heesterbeek, H., & Britton, T. (2012). Mathematical Tools for Understanding Infectious Disease Dynamics. Princeton University Press.
6. World Health Organization (WHO). (2021). Influenza (Seasonal) – https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)
7. Keeling, M. J., & Rohani, P. (2008). Modeling Infectious Diseases in Humans and Animals. Princeton University Press.