VEKTORLANGAN HISOBLASH, NORMALLASHTIRISH VA STANDARTLASHTIRISH: ZAMONAVIY MA'LUMOTLARNI QAYTA ISHLASHDA FUNDAMENTAL YONDASHUVLAR.
Keywords:
vektorlangan hisoblash, normallashtirish, standartlashtirish, ma'lumotlarni oldindan qayta ishlash, NumPy, parallel hisoblash, xususiyatlarni shkalalash, mashinali o'qitish, hisoblash samaradorligiAbstract
Ushbu tadqiqot ishida zamonaviy ma'lumotlarni qayta ishlash va mashinali o'qitish algoritmlarida muhim ahamiyat kasb etuvchi vektorlangan hisoblash, normallashtirish va standartlashtirish usullari to'liq tahlil qilingan. Vektorlangan hisoblash katta hajmdagi ma'lumotlar bilan ishlashda hisoblash samaradorligini sezilarli oshiradi va parallel operatsiyalar orqali qayta ishlash vaqtini qisqartiradi. Normallashtirish va standartlashtirish usullari ma'lumotlarni oldindan qayta ishlashda asosiy rol o'ynaydi va modellarning aniqligini hamda barqarorligini ta'minlaydi. Tadqiqotda vektorlangan operatsiyalarning matematik asoslari, ularning dasturlash tillarida amalga oshirilishi va turli algoritmlar bilan integratsiyasi chuqur o'rganilgan. Normallashtirish usullarining turli xillari, ularning qo'llanish sohalari va har birining afzalliklari hamda cheklovi batafsil tahlil qilingan. Standartlashtirish jarayonining statistik asoslari va amaliy tatbiqlari ko'rsatilgan. Olingan natijalar ma'lumotlarni samarali qayta ishlash va yuqori sifatli mashinali o'qitish modellari yaratish uchun amaliy yo'riqnoma vazifasini bajaradi.References
1. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011; 12: 2825-2830.
2. Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. International Conference on Machine Learning. 2015; 448-456.
3. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Advances in Neural Information Processing Systems. 2019; 32: 8024-8035.
4. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X. TensorFlow: A System for Large-Scale Machine Learning. USENIX Symposium on Operating Systems Design and Implementation. 2016; 265-283.
5. Van Der Walt S, Colbert SC, Varoquaux G. The NumPy Array: A Structure for Efficient Numerical Computation. Computing in Science & Engineering. 2011; 13(2): 22-30.
6. Géron A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. O'Reilly Media. 2019.
7. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press. 2016.
8. Tojimamatov, I. N., & Saidjamolova, B. M. (2023). BIZNESDA «BIG DATA» TEXNOLOGIYALARI VA ULARNING AHAMIYATI. Лучшие интеллектуальные исследования, 11(4), 56–63.
9. Tojimamatov, I. N., & Azizjon o‘g‘li, N. A. Z. (2024). The SQL server language and its structure. American Journal of Open University Education, 1(1), 11–15.
10. Tojimamatov, I. N., Topvoldiyeva, H., Karimova, N., & Inomova, G. (2023). GRAFIK MA’LUMOTLAR BAZASI. Евразийский журнал технологий и инноваций, 1(4), 75–84.
11. Tojimamatov, I. N., & Gulhayo, M. (2023). MA’LUMOTLARNI QAYTA ISHLASHDA ERP TIZIMLARI. MA’LUMOTLARNI QAYTA ISHLASHDA SAP TIZIMLARI. Journal of Integrated Education and Research, 2(4), 87–89.