SUN’IY NEYRON TO’RLARI VA ULARNING BIOLOGIK NEYRONLARDAN FARQI
Keywords:
Sun’iy neyron tarmoqlar, energiya samaradorligi, modelni siqish, kvantizatsiya texnikasi, hisoblash resurslari, energiya tejash, ekologik iz, barqaror rivojlanish, yuqori parametrli modellar.Abstract
Ushbu maqolada sun’iy neyron tarmoqlarning rivojlanishi, ularning energiya sarfi va hisoblash resurslariga bo‘lgan ehtiyoji muhokama qilinadi. Katta hajmdagi modellar (masalan, GPT, LLaMA) yuqori hisoblash quvvatini talab qilishi va ekologik muammolarni yuzaga keltirishi ko‘rsatildi. Maqolada energiya samaradorligini oshirish yo‘llari sifatida modelni siqish va kvantizatsiya texnikalari tahlil qilinadi. Kvantizatsiya yordamida model parametrlarini kichikroq raqamli formatlarga o‘tkazish orqali xotira talabini va energiya iste’molini sezilarli darajada kamaytirish mumkinligi isbotlandi. Ushbu yondashuvlar nafaqat texnik, balki iqtisodiy va ekologik jihatdan ham foydali bo‘lib, sun’iy intellektning barqaror rivojlanishiga xizmat qiladi.
References
1. Goodfellow, I., Bengio, Y., Courville, A. Deep Learning. MIT Press, 2016. — Sun’iy neyron tarmoqlarning nazariy asoslari, struktura va trening jarayonlari bo‘yicha asosiy manba.
2. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H., Kalenichenko, D. Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 2704-2713. — Kvantizatsiya texnikalari va ularning samaradorligini oshirish usullari haqida.
3. Han, S., Mao, H., Dally, W.J. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding. International Conference on Learning Representations (ICLR), 2016. — Modelni siqish va energiya tejash bo‘yicha amaliy yondashuvlar.
4. Strubell, E., Ganesh, A., McCallum, A. Energy and Policy Considerations for Deep Learning in NLP. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019. — NLP sohasidagi yirik neyron tarmoqlarning energiya sarfi va ekologik ta’siri tahlili.
5. Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. Proceedings of the IEEE, 2017, Vol. 105, No. 12, pp. 2295-2329. — Neyron tarmoqlarni samarali hisoblash va energiya tejash bo‘yicha umumiy ko‘rsatmalar.
6. Gholami, A., Kim, S., Yao, Z., et al. A Survey of Quantization Methods for Efficient Neural Network Inference. arXiv preprint arXiv:2103.13630, 2021. — Kvantizatsiya usullarining keng qamrovli tahlili.
7. ChatGPT (OpenAI). Sun’iy neyron tarmoqlar va kvantizatsiya texnikasi bo‘yicha zamonaviy yondashuvlar va energiya samaradorligi haqida maslahatlar va tushuntirishlar. 2025. — Sun’iy intellektning amaliy va nazariy jihatlari bo‘yicha keng qamrovli manba.
8. Tursunaliyeva M.Z. Optimization of network traffic with the help of artificial intelligence based on edge computing: a new methodological approach // Science and Innovation. International Scientific Journal. - 2021. - Vol. 4, No. 9. - P. 76-79. - doi:10.5281/zenodo.17258224.
9. Tursunaliyeva M. Energy efficiency in neural networks: problems of optimizing large models // Science and Innovation. International Scientific Journal. - 2021. - Vol. 4, No. 11. - P. 59-61. - DOI: 10.5281/zenodo.17674536.