AVTOASSOSIATIV NEYRON TARMOQLARNING XOTIRA MODELLASHTIRISHDAGI ROLI VA ISHLASH PRINSIPLARI

Authors

  • Israil Tojimamatov Nurmamatovich Author
  • Yoqubova Shahnoza Rustamjon qizi Author

Keywords:

avtoassosiativ neyron tarmoq, xotira modellashtirish, Hopfild tarmog‘i, sun’iy intellekt, ma’lumotni qayta tiklash, neyrokompyuter tizimlar.

Abstract

Ushbu maqolada avtoassosiativ neyron tarmoqlarning inson miyasidagi xotira jarayonlarini modellashtirishdagi roli va ularning ishlash prinsiplari tahlil qilinadi. Avtoassosiativ tarmoqlar kiruvchi ma’lumotlarni o‘zida saqlab, ularni qisman yoki buzilgan holatda qayta tiklash imkonini beradi. Maqolada Hopfild tarmog‘i misolida avtoassosiativ xotira modeli, o‘qitish algoritmlari va ularning konvergensiya xususiyatlari ko‘rib chiqiladi. Shuningdek, ushbu tarmoqlarning sun’iy intellekt, tasvirni tiklash va ma’lumotlarni qayta ishlash sohalaridagi amaliy qo‘llanilish imkoniyatlari ham yoritilgan.

References

1. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8), 2554–2558.

2. Haykin, S. (2009). Neural Networks and Learning Machines. 3rd Edition, Pearson Education.

3. Kosko, B. (1992). Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence. Prentice-Hall.

4. Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the Theory of Neural Computation. Addison-Wesley.

5. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

6. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.

7. Rakhimov, A., & Tursunov, F. (2021). Sun’iy intellekt va neyron tarmoqlar asoslari. Toshkent: TATU nashriyoti.

8. Fausett, L. (1994). Fundamentals of Neural Networks: Architectures, Algorithms and Applications. Prentice-Hall.

Published

2025-12-06

How to Cite

[1]
2025. AVTOASSOSIATIV NEYRON TARMOQLARNING XOTIRA MODELLASHTIRISHDAGI ROLI VA ISHLASH PRINSIPLARI. Ustozlar uchun. 85, 2 (Dec. 2025), 107–112.