BICHIZIQLI VA KVADRATIK FORMALAR

Authors

  • KELDIYOROVA GULSEVAR OTABEK QIZI Author
  • ABDIMURODOVA IQBOLOY MUZAFFAR QIZI Author
  • TURAYEV ZIYOVUDDIN UKTAMXON O’G’LI Author

Keywords:

: bichiziqli forma, kvadratik forma, chiziqlilik, simmetrik forma, matritsa ko‘rinishi, kanonik ko‘rinish, invariantlar, diagonalizatsiya, chiziqli algebra, vektor fazosi, bilinear form, quadratic form, tasniflash, eigen qiymatlar, pozitiv aniqlik.

Abstract

Ushbu mavzuda chiziqli algebra va uning umumiylashtirilgan tushunchalari hisoblangan bichiziqli va kvadratik formalar nazariyasi o‘rganiladi. Bichiziqli forma – ikki argumentli funksional bo‘lib, har bir argument bo‘yicha alohida chiziqlilik xususiyatiga ega. Kvadratik forma esa vektorlarning o‘zlari bilan bichiziqli forma orqali bog‘lanishi natijasida hosil bo‘ladigan, vektordan bitta haqiqiy sonni qaytaruvchi maxsus funksional sifatida ta’riflanadi. Mavzuda ushbu formalarni matritsa orqali ifodalash, ularning kanonik ko‘rinishga keltirilishi, invariantlar, simmetrik va nosimmetrik formalar, shuningdek, kvadratik shakllarning tasnifi kabi masalalar ko‘rib chiqiladi.

References

1. Apostol, Tom M. Introduction to Analytic Number Theory. Springer-Verlag, 1976.

2. Davenport, Harold. Multiplicative Number Theory. 3rd ed., Revised by Hugh L. Montgomery, Springer, 2000.

3. Hardy, G. H., and E. M. Wright. An Introduction to the Theory of Numbers. 6th ed., Oxford University Press, 2008.

4. Iwaniec, Henryk, and Emmanuel Kowalski. Analytic Number Theory. American Mathematical Society, 2004.

5. Montgomery, Hugh L., and Robert C. Vaughan. Multiplicative Number Theory I: Classical Theory. Cambridge University Press, 2007.

6. Nathanson, Melvyn B. Additive Number Theory: The Classical Bases. Springer, 1996.

7. Titchmarsh, E. C. The Theory of the Riemann Zeta-Function. 2nd ed., Revised by D. R. HeathBrown, Oxford University Press, 1986.

8. Selberg, Atle. “Lectures on Sieve Methods.” Collected Papers, vol. 1, Springer, 1989, pp.

383–489.

9. Vinogradov, I. M. Elements of Number Theory. Dover Publications, 1954.

10. Edwards, H. M. Riemann’s Zeta Function. Dover Publications, 2001.

Published

2025-12-09

How to Cite

[1]
2025. BICHIZIQLI VA KVADRATIK FORMALAR. Ustozlar uchun. 85, 3 (Dec. 2025), 183–190.