THE TOMORROW OF ENGINEERING: HOW AI, ROBOTICS, AND GREEN TECHNOLOGIES ARE SHAPING THE ENGINEERING

Authors

  • Diyorbek Norqulov Author

Abstract

The engineering landscape is undergoing a profound transformation driven by the convergence of artificial intelligence (AI)robotics, and green technologies—a fusion that is redefining the scope and impact of mechanical engineering. This article presents a forward-looking analysis of emerging trends in intelligent systems, automated machinery, and sustainable mechanical design, with a particular focus on how these forces are reshaping the profession globally.

References

References:

I. Laws, policy frameworks & government strategies

1. Ministry of Science and ICT, Korea (2019). National AI Strategy https://english.msit.go.kr

2. Korea Institute for Robot Industry Advancement (2023). Intelligent Robot Master Plan https://kiria.org

3. Ministry of Economy and Finance, Korea (2020). Korean Green New Deal Policy Framework https://english.moef.go.kr

4. Ministry of Trade, Industry and Energy, Korea (2023). Smart Factory Initiative Report https://english.motie.go.kr

5. Government of Uzbekistan (2023). Digital Uzbekistan 2030 Strategic Roadmap

https://digit.uz

6. Ministry of Energy, Uzbekistan (2024). Renewable Energy Targets and Investment Plan https://minenergy.uz

7. Dentons (2025). Uzbekistan Enacts First AI Law https://www.dentons.com/insights/uzbekistan-ai-law

8. KOICA (2024). Korea–Uzbekistan Green Hydrogen Collaboration Report

https://koica.go.kr

II. Journal articles, conference papers & books

9. Jain, A., & Lee, B. (2023). Digital Twin Implementation in Mechanical System Design

10. Patel, R., et al. (2023). AI-Driven Predictive Maintenance in Smart Factories.

IEEE Transactions on Industrial Informatics

11. Zhao, L., & Kim, S. (2024). Soft Robotics and Cobots: Expanding Automation in Unstructured Environments

12. Ma, S., Flanigan, K. A., & Bergés, M. (2024). State-of-the-Art Review: The Use of Digital Twins to Support Artificial Intelligence-Guided Predictive Maintenance

13. Sajadieh, S. M. M. (2025). From Simulation to Autonomy: AI-DT Integration Framework

14. Regenwetter, L., Nobari, A. H., & Ahmed, F. (2021). Deep Generative Models in Engineering Design

15. KAIST News (2025). Cointegration of Single-Transistor Neurons and Synapses for Neuromorphic Hardware

III. Industry reports & institutional publications

16. International Federation of Robotics (2024). World Robotics Report https://ifr.org

17. International Energy Agency (IEA) (2024). Net Zero by 2050: Roadmap for Global Energy Systems https://www.iea.org/reports/net-zero-by-2050

18. OECD (2023). Industry 4.0 and the Global Manufacturing Landscape

19. World Economic Forum (2023). AI for Sustainable Manufacturing https://www.weforum.org/reports/ai-sustainable-manufacturing

20. World Economic Forum (2024). The Future of Mechanical Engineering in the Age of AI https://www.weforum.org/agenda/2024/engineering-ai-robotics-sustainability

21. Samsung Newsroom (2024). AI Visual Inspection Systems in Semiconductor Manufacturing https://news.samsung.com/global

22. Hyundai Motor Company (2023). Predictive Analytics and Robotic Automation in Assembly Line https://www.hyundai.com/worldwide

23. KIA Motors Uzbekistan (2025). AI Robotics Integration at Jizzakh Automotive Plant https://www.kia.com/uz

24. Sungkyunkwan University (SKKU) Research Center (2024). Carbon-Neutral Materials and Sustainable Manufacturing https://research.skku.edu

25. KAIST Robotics Lab (2024). HUBO and Angel Robotics: Recent Advances https://robotics.kaist.ac.kr

26. Kyungpook National University Robotics Lab (2024). Autonomous Navigation & Sensor Fusion Research https://robotics.knu.ac.kr

27. Times of Central Asia (2024). Uzbekistan & South Korea Sign High-Tech Strategic Partnership https://timesca.com/uzbekistan-korea-hightech-partnership

28. Times of Central Asia (2024). Uzbekistan & Korea Launch Smart Greenhouse Project https://timesca.com/uzbekistan-korea-smart-greenhouse

29. KOICA Uzbekistan (2024). Korea-Led Upskilling Programs in AI & Robotics https://koica.go.kr

30. Port of Busan Authority (2024). AI-Powered Crane Automation https://www.portbusan.go.kr

IV. Online resources

31. https://inha.uz

32. https://mechauz.uz

33. https://robotics.kaist.ac.kr

34. https://www.hyundai.com

35. https://en.wikipedia.org

36. https://www.reuters.com

37. https://digit.uz

38. https://it-park.uz

39. https://kiria.org

40. https://uztextile.uz

41. https://koica.go.kr

42. https://www.mintrans.uz

43. https://ifr.org

Published

2025-09-09

How to Cite

Diyorbek Norqulov. (2025). THE TOMORROW OF ENGINEERING: HOW AI, ROBOTICS, AND GREEN TECHNOLOGIES ARE SHAPING THE ENGINEERING. World Scientific Research Journal, 43(1), 46-60. http://journalss.org/index.php/wsrj/article/view/665