MASHINALI O‘QITISHDA METRIK ALGORITMLARNING UMUMLASHTIRISH QOBILIYATINI OSHIRISH
Abstract
Annotatsiya: Ushbu ishda eng yaqin qo‘shni usuli algoritmlarini amalga oshirish xususiyatlarini hisobga olgan holda o‘quv tanlanmalarini senzuralash masalasi ko‘rib chiqiladi. Senzuralash jarayoni berilgan metrika bo‘yicha sinflarning chegaraviy obyektlari to‘plamidan foydalanish bilan bog‘liq bo‘lib, u quyidagi maqsadlarni ko‘zlaydi: shovqinli obyektlarni aniqlash va olib tashlash hamda o‘quv tanlanmaning bog‘langanlik nuqtayi nazaridan klaster tuzilmasini tahlil qilish. Shovqinli obyektlarni olib tashlash va algoritmlarni o‘qitish uchun pretsedentlar bazasini shakllantirishning maxsus shartlari tadqiq etiladi. Bunday baza asosida obyektlarni tanib olish jarayoni boshlang‘ich tanlanmaga nisbatan hisoblash resurslari minimal sarflangan holda yuqoriroq aniqlikni ta’minlashi lozim
References
1. Bishop C. M. Pattern Recognition and Machine Learning. – Springer, 2006.
2. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. – Springer, 2009.
3. Cover T., Hart P. Nearest neighbor pattern classification // IEEE Transactions on Information Theory, 1967.
4. Vorontsov K. V. Mashinnoye obucheniye. – M.: MCCME, 2020.
5. Goodfellow I., Bengio Y., Courville A. Deep Learning. – MIT Press, 2016.