SUN’IY INTELLEKT ASOSIDA INGLIZ–XITOY TARJIMA TIZIMLARI TAHLILI
Keywords:
Kalit so‘zlar: Sun’iy intellekt, mashina tarjimasi, ingliz–xitoy tarjimasi, neyron tarmoqlar, tabiiy tilni qayta ishlash, avtomatik tarjima.Abstract
Annotatsiya. Mazkur maqolada sun’iy intellekt texnologiyalari asosida yaratilgan ingliz–xitoy mashina tarjima tizimlarining nazariy va amaliy jihatlari tahlil qilinadi. Tadqiqotda neyron tarmoqlar, chuqur o‘rganish (deep learning) va tabiiy tilni qayta ishlash texnologiyalariga asoslangan tarjima modellarining ishlash mexanizmlari ko‘rib chiqiladi. Ingliz va xitoy tillari o‘rtasidagi leksik, grammatik va madaniy farqlarning mashina tarjimasi sifatiga ta’siri aniqlanadi. Shuningdek, zamonaviy tarjima tizimlarining afzalliklari, cheklovlari hamda inson tarjimasi bilan qiyosiy jihatlari tahlil qilinadi. Tadqiqot natijalari sun’iy intellekt asosidagi tarjima tizimlarini takomillashtirish va ularni amaliyotda samarali qo‘llashga oid ilmiy xulosalar chiqarishga xizmat qiladi.
References
1. Bahromov, S. (2020). Mashina tarjimasi va sun’iy intellekt: nazariya va amaliyot. Toshkent: Fan va Texnologiya.
2. Cho, Y., & Li, X. (2019). Neural machine translation for English–Chinese language pairs: Challenges and solutions. Journal of Computational Linguistics, 45(3), 211–228. https://doi.org/10.1162/coli_a_00356
3. Crystal, D. (2019). The Cambridge encyclopedia of the English language (3rd ed.). Cambridge: Cambridge University Press.
4. Gao, J., & Wang, H. (2021). Deep learning approaches in Chinese–English translation. International Journal of Artificial Intelligence in Education, 31(2), 150–172. https://doi.org/10.1007/s40593-020-00225-7
5. Iskandarova, M. (2021). Sun’iy intellekt asosida tarjima tizimlarining samaradorligi. Til va kommunikatsiya, 2, 34–42.
6. Kubryakova, E. S. (2018). Машинный перевод и современные технологии обработки языка. Москва: Наука.
7. Luong, M., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025.
8. Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems, 27, 3104–3112.
9. Zhang, Y., & Sun, X. (2020). Evaluation of AI-based English–Chinese translation systems: A comparative study. Computers and Translation, 12(1), 45–63.
10. UNESCO. (2021). Language vitality and digital transformation. Paris: UNESCO Publishing.