FIZIK JARAYONLARNI MODELLASHTIRISHDA DIFFERENSIAL TENGLAMALARNING SONLI YECHIMI VA ALGORITMLARI
Keywords:
Kalit so‘zlar: Fizik jarayonlarni modellashtirish, differensial tenglamalar, Neyman usuli,Eyler usuli va Runge-kutta usuli.Abstract
Annotatsiya: Fizik jarayonlarni modellashtirishda differensial tenglamalarning sonli yechimi va algoritmlari jarayonning murakkabligini hisobga olgan holda analitik echimni topish qiyin bo'lgan hollarda ishlatiladi. Bu jarayonni diskret nuqtalarga bo'lish orqali amalga oshiriladi, shundan so'ng ushbu nuqtalardagi qiymatlarni hisoblash uchun turli xil algoritmlar, masalan,Neyman usuli,Eyler usuli va Runge-kutta usuli qo'llaniladi.Algoritmlarni tanlash hisoblash quvvati,aniqlik talablariga bog'liq bo'ladi.
References
1. Bronson R., Costa G. Differential Equations. McGraw-Hill Education, 2019.
2. Butcher J.C. Numerical Methods for Ordinary Differential Equations. John Wiley & Sons, 2016.
3. Chapra S.C., Canale R.P. Numerical Methods for Engineers. McGraw-Hill, 2020.
4. Dahlquist G., Björck Å. Numerical Methods in Scientific Computing. SIAM, 2008.
5. Kreyszig E. Advanced Engineering Mathematics. Wiley, 2011.
6. Burden R.L., Faires J.D. Numerical Analysis. Cengage Learning, 2021.
7. Lapidus L., Seinfeld J.H. Numerical Solution of Ordinary Differential Equations. Academic Press, 1971.
8. Махмудов А.М. Sonli usullar va ularning qo‘llanilishi. Toshkent: O‘zbekiston Milliy Universiteti nashriyoti, 2018.
9. To‘raev M. Differensial tenglamalar va ularning amaliy qo‘llanishlari. Toshkent: Fan, 2017.
10. Runge C., Kutta M. Über die numerische Auflösung von Differentialgleichungen. Zeitschrift für Mathematik und Physik, 1901.