ENERGETIK TIZIMLARDA AVARIYA HOLATLARINI OLDINDAN ANIQLASH ALGORITMLARI

Authors

  • Tolipova Surayyo Baxodirovna Author
  • Mamadjonov Jasurbek Farhodjon o'g'li Author
  • Kamolov Jamshid Rashid o'g'li Author

Keywords:

Kalit so‘zlar: Energetik tizim avariyalari, oldindan aniqlash algoritmlari, mashina o‘rganish, sun’iy intellekt, tarmoq barqarorligi, SCADA, PMU, real vaqt monitoringi, erta diagnostika, prognozlashtirish tizimlari.

Abstract

Annotatsiya: Ushbu maqolada elektr energetik tizimlarda avariya holatlarini oldindan aniqlashning zamonaviy algoritmlari va usullari tahlil qilinadi. Energetik tizimlarning murakkabligi, yuklarning ortib borishi va qayta tiklanuvchi energiya manbalarining o‘sib borayotgan ulushi tizim barqarorligini saqlash va keng ko‘lamli avariyalarning oldini olish uchun samarali diagnostika va prognozlashtirish algoritmlarini talab qilmoqda. Maqolada statistik tahlil, signallarni qayta ishlash, sun’iy intellekt va mashina o‘rganish (ML) asosida ishlaydigan avariyalarni erta aniqlash tizimlari ko‘rib chiqiladi.

References

1. Abduraxmanov, T.A., Ismoilov, J.Sh. (2023). Elektr tarmoqlarida avariya holatlarini oldindan aniqlashning sun’iy intellekt asosidagi usullari. O‘zbekiston energetikasi jurnali, 2(4), 28-37. Toshkent.

2. Xolmirzayev, B.T., Karimov, M.A. (2022). Keng maydon o‘lchash tizimlari (WAMS) asosida elektr tarmoqlarini monitoring qilish. Energetika va avtomatika, 3(6), 45-53.

3. Sultanov, U.K., Raximov, A.A. (2021). Elektr tizimlarida barqarorlikni baholash va avariyalarni prognozlashning statistik usullari. Fan va texnika yangiliklari, 5(9), 61-68.

4. Nurmatov, R.J., Toshpulatov, Sh.M. (2023). Energetik tizimlarda ma’lumotlarni qayta ishlash va tahlil qilishning zamonaviy algoritmlari. Axborot texnologiyalari va telekommunikatsiyalar, 1(7), 34-42.

5. Yuldashev, Z.S., Usmonov, D.A. (2022). O‘zbekiston elektr tarmoqlarida SCADA va PMU tizimlarini integratsiyalash. Qayta tiklanuvchi energiya manbalari, 4(3), 55-63.

6. Zhao, J., Zhang, G., & Dong, Z.Y. (2021). Machine Learning-Based Real-Time Prediction of Power System Transient Stability. IEEE Transactions on Power Systems, 36(5), 3922-3934.

7. Gomez, F.R., Rajapakse, A.D., & Annakkage, U.D. (2020). Support Vector Machine-Based Algorithm for Post-Fault Transient Stability Status Prediction. International Journal of Electrical Power & Energy Systems, 119, 105938.

8. IEEE Power & Energy Society. (2022). Wide-Area Monitoring, Protection and Control Systems: Technologies and Applications. IEEE Standards Association.

9. Wang, Y., Chen, Q., & Hong, T. (2023). Deep Learning for Power System Disturbance Analysis: A Review. Renewable and Sustainable Energy Reviews, 178, 113232.

10. International Council on Large Electric Systems (CIGRE). (2021). Guide for the Application of AI and ML in Power System Security Assessment. CIGRE Working Group C4.47 Report.

Published

2025-12-07

How to Cite

Tolipova Surayyo Baxodirovna, Mamadjonov Jasurbek Farhodjon o'g'li, & Kamolov Jamshid Rashid o'g'li. (2025). ENERGETIK TIZIMLARDA AVARIYA HOLATLARINI OLDINDAN ANIQLASH ALGORITMLARI. JOURNAL OF NEW CENTURY INNOVATIONS, 90(1), 228-234. https://journalss.org/index.php/new/article/view/8577