QUYOSH ENERGIYASIDAN FOYDALANISH SAMARADORLIGINI OSHIRISH UCHUN YANGI INVERTOR TEXNOLOGIYALAR

Authors

  • Tolipova Surayyo Baxodirovna Author
  • Abduraimov Suxrob Azizjon o'g'li Author
  • Dexqonov Behruz Voxid o'g'li Author

Keywords:

Kalit so'zlar: Fotovoltaik inverter, energiya samaradorligi, maksimal quvvat nuqtasi kuzatish (MPPT), keng tarmoqli yarimo'tkazgichlar, fotovoltaik tizimlar, mikroinverter, quyosh energetikasi.

Abstract

Annotatsiya: Ushbu maqolada fotovoltaik (FV) quvvat tizimlarining umumiy samaradorligini oshirishga qaratilgan zamonaviy inverter texnologiyalarining rivojlanishi va imkoniyatlari tahsil qilinadi. An'anaviy inverter tizimlarida kuzatiladigan energiya yo'qotishlari va ularning tizim ishlashiga ta'siri tahlil qilinadi. Markaziy, string va mikroinverterlar kabi turlarning solishtirma tahlili asosida har bir texnologiyaning afzalliklari va kamchiliklari ochib beriladi. Maqolada, ayniqsa, ko'p kirishli DC-DC konvertorlari, keng tarmoqli yarimo'tkazgichlar (SiC va GaN) asosidagi inverterlar va aqlli maksimal quvvat nuqtasi kuzatish (MPPT) algoritmlari kabi so'nggi yutuqlarga alohida e'tibor qaratiladi. Ushbu yangi texnologiyalar elektr energiyasini ishlab chiqarishning o'rtacha yillik samaradorligini sezilarli darajada oshirishi, tarmoqqa integratsiyani yaxshilashi va fotovoltaik tizimlarning iqtisodiy jozibadorligini oshirishi ko'rsatib beriladi. Tadqiqot natijalari, ushbu texnologiyalarni joriy etish energiya konversiyasining samaradorligini 3-8% ga oshirishi mumkinligini ko'rsatadi, bu esa FV stansiyasining butun hayot davomidagi daromadini sezilarli darajada oshiradi.

References

1. Hua, C., & Fang, Y. (2021). Advanced Inverter Technologies for Photovoltaic Systems: A Comprehensive Review. IEEE Transactions on Power Electronics, 36(8), 8905-8923.

2. Blaabjerg, F., Yang, Y., & Liu, H. (2020). Power Electronics for Renewable Energy Systems: Photovoltaic and Wind Power. Elsevier Academic Press.

3. Kjaer, S. B., Pedersen, J. K., & Blaabjerg, F. (2022). A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules. IEEE Transactions on Industry Applications, 58(1), 365-378.

4. Islam, M., Mekhilef, S., & Hasan, M. (2019). SiC and GaN Power Semiconductor Devices: A New Era for Power Electronics. Renewable and Sustainable Energy Reviews, 112, 824-834.

5. Patel, H., & Agarwal, V. (2020). Maximum Power Point Tracking Scheme for PV Systems Operating Under Partially Shaded Conditions. IEEE Transactions on Industrial Electronics, 67(6), 4686-4696.

6. Kumar, N., Singh, B., & Panigrahi, B. K. (2021). Grid-Integrated PV Systems with ML-Based MPPT and Power Quality Enhancement. Solar Energy, 224, 1329-1342.

7. Guenneguez, S., & Karatepe, E. (2022). Comparative Analysis of Central, String and Microinverters in Utility-Scale PV Plants. Energy Conversion and Management, 253, 115167.

8. Ozdemir, S., & Altin, N. (2020). Design and Implementation of a High-Efficiency SiC-Based PV Inverter with Intelligent Cooling System. International Journal of Electrical Power & Energy Systems, 117, 105689.

9. REN21. (2023). Renewables 2023 Global Status Report. REN21 Secretariat, Paris.

10. International Energy Agency (IEA). (2022). Photovoltaic Power Systems Programme Annual Report 2022. IEA PVPS.

Published

2025-12-07

How to Cite

Tolipova Surayyo Baxodirovna, Abduraimov Suxrob Azizjon o'g'li, & Dexqonov Behruz Voxid o'g'li. (2025). QUYOSH ENERGIYASIDAN FOYDALANISH SAMARADORLIGINI OSHIRISH UCHUN YANGI INVERTOR TEXNOLOGIYALAR. JOURNAL OF NEW CENTURY INNOVATIONS, 90(1), 249-256. https://journalss.org/index.php/new/article/view/8583