K-MEANS ALGORITMIGA ASOSLANGAN MIJOZLARNI SEGMENTLASH USULINING TAHLILI

Authors

  • Minavarjonov Ozodbek Ozodjonovich Author
  • Usmonov Muhammadyusuf Mamasidiq o‘g‘li Author

Keywords:

mashinali o‘qitish, klasterlash, K-means, mijozlarni segmentlash, ma’lumotlar tahlili, marketing.

Abstract

Ushbu maqolada mashinali o‘qitishning nazoratsiz o‘qitish 
usullaridan biri bo‘lgan K-means klasterlash algoritmi yordamida mijozlarni 
segmentlash masalasi o‘rganildi. Mijozlarning xarid faoliyati, yillik sarf-xarajatlari va 
tashrif chastotasiga asoslangan ma’lumotlar to‘plami tahlil qilindi. Natijalar K-means 
algoritmi mijozlarni o‘zaro farqlanuvchi guruhlarga samarali ajratishini ko‘rsatdi. 
Olingan segmentlar marketing strategiyalarini optimallashtirish uchun muhim amaliy 
ahamiyatga ega.

References

Anderberg, M. R. Cluster Analysis for Applications. Academic Press, 1973.

Arthur, D., Vassilvitskii, S. K-means++: The Advantages of Careful Seeding.

Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, 2007.

Jain, A. K. Data Clustering: 50 Years Beyond K-means. Pattern Recognition Letters,

2010.

MacQueen, J. Some Methods for Classification and Analysis of Multivariate

Observations. Proceedings of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability, 1967.

Scikit-learn Documentation. Machine Learning in Python. https://scikit-learn.org

Tan, P. N., Steinbach, M., Kumar, V. Introduction to Data Mining. Pearson Education,

2006.

Wu, X., Kumar, V., et al. Top 10 Algorithms in Data Mining. Knowledge and

Information Systems, 2008

Published

2025-12-15

How to Cite

K-MEANS ALGORITMIGA ASOSLANGAN MIJOZLARNI SEGMENTLASH USULINING TAHLILI . (2025). ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ, 83(3), 95-101. https://journalss.org/index.php/obr/article/view/10340