FACE RECOGNITION YORDAMIDA YUZLARNI TANIY OLADIGAN TIZIM
Keywords:
Face Recognition, mashinali o‘qitish, chuqur o‘rganish, CNN, yuzni aniqlash, biometrik tizim, embedding, tanish tizimi.Abstract
Ushbu maqolada mashinali o‘qitish va chuqur o‘rganish asosida
yaratilgan Face Recognition texnologiyasining nazariy asoslari, ishlash mexanizmi
hamda amaliy qo‘llanilishi yoritilgan. Tizimning yuzni aniqlash, yuzni
normallashtirish, yuzdan xususiyatlar ajratib olish va identifikatsiya qilish kabi asosiy
bosqichlari batafsil ko‘rib chiqildi. Shuningdek, CNN asosida ishlovchi FaceNet,
ArcFace, VGGFace kabi mashhur modellar, ularning afzalliklari, cheklovlari va
amaliy natijalari solishtirildi. Tajribaviy tahlillar Face Recognition tizimining yuqori
aniqlik, tezkorlik va barqarorlik qobiliyatiga ega ekanligini ko‘rsatadi. Tizim
xavfsizlik, biometrik identifikatsiya, videokuzatuv, mobil autentifikatsiya va boshqa
ko‘plab yo‘nalishlarda katta imkoniyatlarga ega. Tadqiqotda metodlarning
samaradorligi va real muhitdagi o‘zgaruvchan sharoitlarga bo‘lgan chidamliligi ham
tahlil qilindi.
References
1.
Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A unified
embedding for face recognition and clustering. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 815-823.
2.
Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection and
alignment using multitask cascaded convolutional networks. IEEE Signal Processing
Letters, 23(10), 1499-1503.
3.
Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition.
Proceedings of the British Machine Vision Conference (BMVC), 41.1-41.12.
4.
Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2019). ArcFace: Additive
angular margin loss for deep face recognition. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 4690-4699.
5.
Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). DeepFace: Closing
the gap to human-level performance in face verification. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 1701-1708.