FACE RECOGNITION YORDAMIDA YUZLARNI TANIY OLADIGAN TIZIM

Authors

  • Minavarjonov Ozodbek Ozodjonovich Author
  • Usmonov Muhammadyusuf Mamasidiq o‘g‘li Author

Keywords:

Face Recognition, mashinali o‘qitish, chuqur o‘rganish, CNN, yuzni aniqlash, biometrik tizim, embedding, tanish tizimi.

Abstract

 Ushbu maqolada mashinali o‘qitish va chuqur o‘rganish asosida 
yaratilgan Face Recognition texnologiyasining nazariy asoslari, ishlash mexanizmi 
hamda amaliy qo‘llanilishi yoritilgan. Tizimning yuzni aniqlash, yuzni 
normallashtirish, yuzdan xususiyatlar ajratib olish va identifikatsiya qilish kabi asosiy 
bosqichlari batafsil ko‘rib chiqildi. Shuningdek, CNN asosida ishlovchi FaceNet, 
ArcFace, VGGFace kabi mashhur modellar, ularning afzalliklari, cheklovlari va 
amaliy natijalari solishtirildi. Tajribaviy tahlillar Face Recognition tizimining yuqori 
aniqlik, tezkorlik va barqarorlik qobiliyatiga ega ekanligini ko‘rsatadi. Tizim 
xavfsizlik, biometrik identifikatsiya, videokuzatuv, mobil autentifikatsiya va boshqa 
ko‘plab yo‘nalishlarda katta imkoniyatlarga ega. Tadqiqotda metodlarning 
samaradorligi va real muhitdagi o‘zgaruvchan sharoitlarga bo‘lgan chidamliligi ham 
tahlil qilindi.

References

1.

Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A unified

embedding for face recognition and clustering. Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 815-823.

2.

Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection and

alignment using multitask cascaded convolutional networks. IEEE Signal Processing

Letters, 23(10), 1499-1503.

3.

Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition.

Proceedings of the British Machine Vision Conference (BMVC), 41.1-41.12.

4.

Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2019). ArcFace: Additive

angular margin loss for deep face recognition. Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), 4690-4699.

5.

Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). DeepFace: Closing

the gap to human-level performance in face verification. Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 1701-1708.

Published

2025-12-15

How to Cite

FACE RECOGNITION YORDAMIDA YUZLARNI TANIY OLADIGAN TIZIM. (2025). ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ, 83(3), 102-113. https://journalss.org/index.php/obr/article/view/10341