RAQAMLI TASVIRLARNI QAYTA ISHLASHDA SHOVQINNI KAMAYTIRISH USULLAR

Authors

  • Jo’raboyeva Hurixon Axmadjon qizi Author
  • Jo’raboyeva Bibifotima Arabboy qizi Author
  • Dalibekov Lochinbek Rustambekovich Author

Keywords:

Kalit so`zlar: Raqamli tasvir, shovqini kamaytirish, filtrlar, transformatsion metodlar, adaptiv filtrlar, chuqur o‘rganish, konvolyutsion neyron tarmoqlari (CNN), PSNR, SSIM.

Abstract

Annotatsiya 
Raqamli  tasvirlarda shovqin paydo  bo‘lishi  tasvir  sifatini  pasaytiradi va  turli 
sohalarda,  jumladan  tibbiyot,  sanoat,  sun’iy  intellekt  va  kompyuter  grafikasi 
loyihalarida  natijaviy  ishlashga  salbiy  ta’sir  ko‘rsatadi.  Shovqinni  kamaytirish  turli 
yondashuvlar orqali amalga oshiriladi, jumladan an’anaviy lineer va no-lineer filtrlar, 
transformatsion metodlar, statistik adaptiv usullar hamda mashina o‘rganish va chuqur 
o‘rganish algoritmlari. Natijalar shuni ko‘rsatadiki, har bir yondashuvning o‘ziga xos 
afzallik  va  cheklovlari  mavjud  bo‘lib,  ularni  vaziyatga  moslashtirish  orqali  tasvir 
sifatini maksimal darajada yaxshilash mumkin. Turli usullarni solishtirish va PSNR 
hamda  SSIM  kabi  metrikalar  asosida  baholash  ularning  samaradorligini  raqamli 
jihatdan aniqlash imkonini beradi. Shu bilan birga, maqola natijalari turli sohalarda 
amaliy qo‘llanish imkoniyatlarini ko‘rsatadi va kelajakda yanada samarali shovqinni 
kamaytirish algoritmlarini ishlab chiqish uchun asos yaratadi [1–9]. 

References

Foydalanilgan adabiyotlar

1 Gonzalez R.C., Woods R.E. Digital Image Processing. 4th Edition. Pearson, 2018.

2 Jain A.K. Fundamentals of Digital Image Processing. Prentice Hall, 1989.

3 Buades A., Coll B., Morel J.M. A Non-Local Algorithm for Image Denoising.

CVPR, 2005.

4 Dabov K., Foi A., Katkovnik V., Egiazarian K. Image Denoising by Sparse 3D

Transform-Domain Collaborative Filtering. IEEE Transactions on Image

Processing, 2007.

5 Zhang K., Zuo W., Chen Y., Meng D., Zhang L. Beyond a Gaussian Denoiser:

Residual Learning of Deep CNN for Image Denoising. IEEE Transactions on Image

Processing, 2017.

6 Rudin L.I., Osher S., Fatemi E. Nonlinear Total Variation based Noise Removal

Algorithms. Physica D, 1992.

7 Starck J.-L., Murtagh F., Fadili J. Sparse Image and Signal Processing: Wavelets

and Related Geometric Multiscale Analysis. Cambridge University Press, 2010.

8 Burger H.C., Schuler C.J., Harmeling S. Image Denoising: Can Plain Neural

Networks Compete with BM3D? CVPR, 2012.

9 Buades A., Coll B., Morel J.M. Non-Local Means Denoising. Image Processing On

Line, 2011.

Published

2025-12-18

How to Cite

Jo’raboyeva Hurixon Axmadjon qizi, Jo’raboyeva Bibifotima Arabboy qizi, & Dalibekov Lochinbek Rustambekovich. (2025). RAQAMLI TASVIRLARNI QAYTA ISHLASHDA SHOVQINNI KAMAYTIRISH USULLAR . TADQIQOTLAR, 76(4), 347-352. https://journalss.org/index.php/tad/article/view/11267