ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY FOR STUDYING DSSC ELECTROLYTES

Authors

  • Naimjonov Arslonbek Maxammadjon o`g`li Author

Keywords:

Keywords: DSSC; electrolyte; electrochemical impedance spectroscopy; Nyquist plot; Bode plot; gel polymer electrolyte; iodide/triiodide; diffusion impedance; constant phase element; Kramers-Kronig validation Nomenclature:

Abstract

Abstract. Dye-sensitized solar cells (DSSCs) rely critically on the electrolyte to 
regenerate the dye, transport redox species, and sustain charge-transfer at the counter 
electrode while limiting recombination at the photoanode interface. Electrochemical 
impedance spectroscopy (EIS) is one of the most informative nondestructive methods 
for  separating  bulk  electrolyte  transport  from  interfacial  kinetics  and 
diffusioncontrolled  processes  across  a  broad  frequency  window.  This  review 
consolidates the theoretical basis of impedance spectroscopy in forms directly usable 
for  DSSC  electrolyte  research,  with  emphasis  on  Nyquist/Bode  interpretation, 
constant-phase  behavior,  diffusion  impedance,  and  the  relationship  between  fitted 
parameters and physically meaningful electrolyte properties such as ionic conductivity, 
effective permittivity, diffusion coefficient, mobility, and charge-carrier concentration. 
We  provide  a  rigorous  and  practical  workflow  for  designing  EIS  experiments  in 
symmetric "dummy" cells and complete DSSCs under dark and illumination, highlight 
pitfalls related to non-stationarity and model non-uniqueness, and describe validation 
using  Kramers-Kronig  consistency  tests.  Representative  electrolyte  formulations-
including  iodide/triiodide  liquid  electrolyte  and  gel  polymer  electrolytes  based  on 
PAN/EC/PC with iodide salts and ionic-liquid iodides, as well as polymer blends such 
as PVP/PMMA-are discussed to illustrate how composition and morphology impact 
impedance signatures. The review closes with reporting recommendations aimed at 
improving  reproducibility  and  comparability  across  studies,  enabling  EIS-guided 
electrolyte optimization toward higher efficiency and improved stability DSSCs [1,2]. 

References

REFERENCES

[1] O'Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-

sensitized colloidal TiO 2 films.

[2] Nature (1991).

[3] Wang, Q.; Moser, J.-E.; Grätzel, M. Electrochemical impedance spectroscopic

analysis of dye-sensitized solar cells. J. Phys. Chem. B (2005).

[4] Fabregat-Santiago, F. et al. Influence of electrolyte in transport and recombination

in dye-sensitized solar cells studied by impedance spectroscopy. Sol. Energy Mater.

Sol. Cells (2005).

[5] Bisquert, J. Theory of impedance and capacitance spectroscopy of solar cells... J.

Phys. Chem. C (2014).

[6] Lazanas, A. C. et al. Electrochemical impedance spectroscopy: A tutorial. ACS

Measurement Science Au (2023).

[7] Boukamp, B. A. Guidance to solid-state electrochemical impedance analysis

(emphasizes validation and CNLS fitting). (2025).

[8] Arof, A. K. et al. Polyacrylonitrile gel polymer electrolyte for DSSCs (iodide salt

selection; EIS characterization).

[9] (2017).

[10] Varishetty, M. M. et al. PAN-based polymer gel electrolyte development for

DSSCs; high ionic conductivity and performance. (2023).

[11] Raut, P. et al. Review on gel polymer electrolytes for DSSCs. (2022).

Published

2025-12-21

How to Cite

Naimjonov Arslonbek Maxammadjon o`g`li. (2025). ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY FOR STUDYING DSSC ELECTROLYTES . TADQIQOTLAR, 76(6), 83-89. https://journalss.org/index.php/tad/article/view/11971