MATEMATIK MODELLASHTIRISHDA FURYE, DALAMBER VA XARAKTERISTIK USULLAR
Keywords:
Kalit so‘zlar: matematik fizika tenglamalari, Furye usuli, Dalamber usuli, xarakteristik usullar, avtomodellik, to‘lqin tenglamasi, issiqlik tenglamasi.Abstract
Annotatsiya
Ushbu maqolada matematik fizika tenglamalarini yechishda qo‘llaniladigan
Furye usuli, Dalamber usuli va xarakteristik usullarning nazariy asoslari hamda amaliy
imkoniyatlari yoritilgan. Issiqlik o‘tkazuvchanlik va to‘lqin tenglamalari misolida
ushbu usullarning samaradorligi tahlil qilingan. Shuningdek, avtomodellik
tushunchasining matematik mazmuni va uning fizik jarayonlarni modellashtirishdagi
roli ochib berilgan. Mazkur yondashuvlar murakkab jarayonlarni soddalashtirish va
umumiy qonuniyatlarni aniqlash imkonini berishi asoslab beriladi. Maqola matematik
fizika va amaliy matematika yo‘nalishida tahsil olayotgan talabalar hamda
tadqiqotchilar uchun mo‘ljallangan.
References
FOYDALANILGAN ADABIYOTLAR
1. Haberman R. Applied Partial Differential Equations with Fourier Series and
Boundary Value Problems. – Boston: Pearson, 2013.
2. Tikhonov A.N., Samarskii A.A. Equations of Mathematical Physics. – New York:
Dover, 1990.
3. Logan J.D. Applied Mathematics. – Hoboken: Wiley, 2013.
4. Ince E.L. Ordinary Differential Equations. – New York: Dover, 1956.
5. Kamke E. Differentialgleichungen: Lösungen und Lösungsmethoden. – Leipzig:
Chelsea, 1959.
6. Farlow S.J. Partial Differential Equations for Scientists and Engineers. – New
York: Dover, 1993.
7. Ibragimov N.H. Differentsial tenglamalar va ularning ilovalari. – Toshkent: Fan,
2010.
8. Karimov B.A. Matematik fizika tenglamalari va ularni yechish usullari. –
Toshkent: O‘zbekiston Milliy Universiteti nashriyoti, 2015.
9. Lurie A.I. Analiz va differensial tenglamalar. – Moskva: Nauka, 2002.
10. Smirnov V.I. Cours de mathematiques superieures: Cauchy problem and
characteristics. – Moscow: Fizmatlit, 2005.