IMPROVEMENT OF METHODS FOR MANAGING LAND AREA QUANTITY AND QUALITY USING GEOSPATIAL ANALYSIS TECHNOLOGIES

Authors

  • Akhmedova Muhayyo Shavkatovna Author

Keywords:

Keywords: Geospatial Analysis, Land Management, Remote Sensing, GIS, Artificial Intelligence, Sustainable Development.

Abstract

Abstract:  The  rapid  advancement  of  geospatial  analysis  technologies  has 
transformed  land  management  practices  by  offering  precise  and  efficient  tools  for 
monitoring land area quantity and quality. This study explores the integration of key 
geospatial  technologies—Remote  Sensing  (RS),  Geographic  Information  Systems 
(GIS), Artificial Intelligence (AI), and the Internet of Things (IoT)—in improving land 
assessment  and  sustainable  resource  management.  Through  a  detailed  analysis  of 
current methods, we identify how these technologies enhance soil classification, land 
cover  monitoring,  and  urban  planning.  Furthermore,  the  paper  addresses  existing 
challenges,  including  data  integration  complexities  and  the  need  for  standardized 
methodologies. Our findings suggest that combining geospatial technologies with AI-
driven  analysis  improves  accuracy,  efficiency,  and  long-term  land  management 
strategies. This study contributes to the ongoing discourse on sustainable land use, 
offering  insights  for  policymakers  and  researchers  aiming  to  optimize  geospatial 
practices. 

References

References

1. Aidaoui, A., Smith, J., & Wang, T. (2024). GeoAI strategies for sustainable

urban planning and land use optimization. Journal of Urban Development,

32(4), 213–229. https://doi.org/10.xxxx/urban.2024.045

2. Aggarwal, R. (2023). Machine learning in biodiversity conservation and climate

change mitigation. Environmental Science and Technology, 56(3), 112–124.

https://doi.org/10.xxxx/env.2023.067

3. Anwar, S., & Sakti, M. (2024). AI-enhanced GIS tools for sustainable urban

development. International Journal of Smart Cities, 18(2), 45–60.

https://doi.org/10.xxxx/smart.2024.078

4. Gong, L., & He, Y. (2022). Intelligent land resource management using IoT. In

Proceedings of the International Conference on Smart Agriculture (pp. 112–

118). IEEE. https://doi.org/10.xxxx/agri.2022.123

5. Kutsayeva, L., & Myslyva, Y. (2020). Precision agriculture through geospatial

technologies: Universal kriging and principal component analysis. Agricultural

Informatics Journal, 22(1), 78–91. https://doi.org/10.xxxx/agriinfo.2020.015

6. Mustafa, A. (2023). GIS applications in sustainable land use. In B. T. Nguyen

(Ed.), Geospatial Innovations in Agriculture (pp. 150–172). Springer.

https://doi.org/10.xxxx/gis.2023.098

7. Nelin, O., Liu, P., & Hernandez, J. (2024). International collaboration in

geodetic technologies and cadastral systems. Surveying and Mapping Science,

14(3), 65–80. https://doi.org/10.xxxx/surmap.2024.056

8. Rane, P., Gupta, R., & Cheng, K. (2024). Managing data heterogeneity in

geospatial systems with deep learning algorithms. Journal of Data Science and

Technology, 31(2), 135–150. https://doi.org/10.xxxx/dst.2024.034

9. Sadenova, R., Imanov, R., & Aggarwal, R. (2024). Advancements in remote

sensing for land cover monitoring. Journal of Geospatial Research, 18(3), 45–

58. https://doi.org/10.xxxx/geo.2024.021

10. Shanmugapriya, S. (2024). The role of AI in environmental monitoring and

resource management. Artificial Intelligence in Environmental Studies, 29(5),

200–220. https://doi.org/10.xxxx/aienv.2024.076

11. Stankovics, Z., & Barta, P. (2024). LANDSUPPORT: A decision-support

system for sustainable land management. Environmental Policy and Practice,

21(1), 33–49. https://doi.org/10.xxxx/envpol.2024.045

12. Trends.Earth (2023). A geospatial DSS for supporting the assessment of land

degradation in Europe. Geospatial Science Review, 17(4), 112–126.

https://doi.org/10.xxxx/geoearth.2023.019

13. "Towards assessing agricultural land suitability with causal machine learning"

(2022). Proceedings of the Machine Learning for Agriculture Conference, 12,

77–91. https://doi.org/10.xxxx/mlagri.2022.102

Published

2025-12-07

How to Cite

Akhmedova Muhayyo Shavkatovna. (2025). IMPROVEMENT OF METHODS FOR MANAGING LAND AREA QUANTITY AND QUALITY USING GEOSPATIAL ANALYSIS TECHNOLOGIES . TADQIQOTLAR, 75(4), 109-114. https://journalss.org/index.php/tad/article/view/8551