GRADIENT BOOSTING (XGBOOST) YORDAMIDA KREDIT RISKINI BAHOLASH

Authors

  • Pozilov Abdulaziz Pahlavonjon o‘g‘li Author

Keywords:

Kalit so‘zlar: XGBoost, Prognozlash, Mashinali o‘qitish, AUC-ROC, Matrix

Abstract

  Annotatsiya: Ushbu maqolada kredit riskini baholash uchun Gradient Boosting 
va  uning  samaradorligi  oshirilgan  turi  —  XGBoost  algoritmi  qo‘llanilishi  tahlil 
qilinadi.  Maqolada  kredit  riskining  mohiyati,  ma’lumotlarni  tayyorlash  bosqichlari, 
modelni  qurish  va  baholash  jarayoni  bosqichma-bosqich  ko‘rsatildi.  Bu  yondashuv 
bank  tizimlarida  qarz  berish  qarorlarini  avtomatlashtirish,  moliyaviy  xavflarni 
kamaytirish  va  kredit  portfellarini  optimallashtirishda  muhim  ahamiyat  kasb  etadi. 
Eksperimental tavsif va baholash metrikalari orqali XGBoost modelining an’anaviy 
usullarga nisbatan afzalliklari yoritiladi. 

References

Foydalanilgan adabiyotlar

1. XGBoost: A Scalable Tree Boosting System.Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining

2. Master Machine Learning Algorithms. Machine Learning Mastery.

3. Hastie, T. The Elements of Statistical Learning. Springer.

Published

2025-12-09

How to Cite

Pozilov Abdulaziz Pahlavonjon o‘g‘li. (2025). GRADIENT BOOSTING (XGBOOST) YORDAMIDA KREDIT RISKINI BAHOLASH . TADQIQOTLAR, 75(5), 259-262. https://journalss.org/index.php/tad/article/view/9005