IKKI O’LCHOVLI SOHADA DIFFUZIYA JARAYONINI MATEMATIK MODELLASHTRISH

Authors

  • Xaydarov Ibroximjon Usmonaliyevich Author
  • Xurshida Nabiyeva Iqboljon qizi Author

Keywords:

Kalit so‘zlar: diffuziya, ikki o‘lchovli model, matematik modellashtirish, qisman differensial tenglamalar, Fik qonuni, sonli usullar, analitik yechim, chegaraviy shartlar, ekologiya, materialshunoslik, biologiya, tibbiyot, kimyo texnologiyasi, issiqlik tenglamasi, Brown harakati, kompyuter simulyatsiyasi, sonli differensial usullar, sonli elementlar usuli, sonli hajmlar usuli, spektral usullar.

Abstract

 
Annotatsiya:  Ushbu  maqolada  ikki  o‘lchovli  sohada  diffuziya  jarayonini 
matematik  modellashtirish  masalasi  ko‘rib  chiqiladi.  Diffuziya  —  moddalar 
konsentratsiyasining vaqt va makon bo‘yicha tarqalish jarayoni bo‘lib, uni matematik 
tenglamalar  yordamida  ifodalash  murakkab  tizimlarni  tahlil  qilishda  muhim 
ahamiyatga ega. Tadqiqotda J. Crankning “The Mathematics of Diffusion” (Oxford 
University Press, 1975) asarida bayon etilgan nazariy asoslar hamda reaksiya-diffuziya 
tenglamalari bo‘yicha zamonaviy yondashuvlar qo‘llanildi. Maqolada ikki o‘lchovli 
diffuziya tenglamasining analitik va sonli yechimlari, chegaraviy shartlarning ta’siri, 
hamda  kompyuter  simulyatsiyalari  orqali  natijalarni  vizualizatsiya  qilish  usullari 
yoritiladi.  Ushbu  tadqiqot  fizik,  kimyoviy  va  biologik  jarayonlarni  chuqurroq 
tushunishga xizmat qiladi va amaliy qo‘llanilish imkoniyatlarini kengaytiradi. 

References

Foydalanilgan adabiyotlar

1. Lotka, A. J. (1925). Elements of Physical Biology. Williams & Wilkins, Baltimore.

2. Volterra, V. (1926). Fluctuations in the abundance of a species considered

mathematically. Nature, 118, 558–560.

3. Murray, J. D. (2002). Mathematical Biology I: An Introduction. Springer, New

York.

4. Edelstein-Keshet, L. (2005). Mathematical Models in Biology. SIAM, Philadelphia.

5. Kot, M. (2001). Elements of Mathematical Ecology. Cambridge University Press.

6. May, R. M. (1973). Stability and Complexity in Model Ecosystems. Princeton

University Press.

7. Freedman, H. I. (1980). Deterministic Mathematical Models in Population Ecology.

Marcel Dekker, New York.

8. Brauer, F., & Castillo-Chavez, C. (2012). Mathematical Models in Population

Biology and Epidemiology. Springer.

9. Gause, G. F. (1934). The Struggle for Existence. Williams & Wilkins, Baltimore.

10. Holling, C. S. (1959). The Components of Predation as Revealed by a Study of

Small-Mammal Predators. Ecology, 40(3), 335–356.

Published

2025-12-23

How to Cite

Xaydarov Ibroximjon Usmonaliyevich, & Xurshida Nabiyeva Iqboljon qizi. (2025). IKKI O’LCHOVLI SOHADA DIFFUZIYA JARAYONINI MATEMATIK MODELLASHTRISH . Ta’lim Innovatsiyasi Va Integratsiyasi, 59(5), 64-69. https://journalss.org/index.php/tal/article/view/12531