K-MEANS KLASTERLASH YORDAMIDA MIJOZLARNI SEGMENTLASH
Keywords:
Kalit so‘zlar: K-means, klasterlash, mijozlarni segmentlash, marketing, ma’lumotlar tahlili, ma’lumotlar bazasiAbstract
Annotatsiya: Ushbu maqola mijozlarni segmentlash jarayonida K-means
klasterlash algoritmining qo‘llanilishi va samaradorligini o‘rganishga bag‘ishlangan.
Mijozlar bazasini tahlil qilish va ularni turkumlarga ajratish bugungi biznesda
marketing strategiyasini optimallashtirish, mijozlarga individual yondashuvni
ta’minlash hamda sotuvlarni oshirish uchun muhim ahamiyatga ega.
Maqolada K-means algoritmi asoslari, uning ishlash printsipi, klasterlar sonini
tanlash mezonlari va algoritmning turli parametrlarga bog‘liqligi batafsil tushuntiriladi.
Shuningdek, real mijozlar ma’lumotlari bazasi misolida klasterlash natijalari
ko‘rsatilib, har bir segmentning xususiyatlari tahlil qilinadi.
Olingan natijalar mijozlarni samarali segmentlash orqali kompaniyalar uchun
marketing kampaniyalarini maqsadli yo‘naltirish va resurslarni optimal taqsimlash
imkonini berishini ko‘rsatadi.
References
Foydalanilgan adabiyotlar:
1. Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques (3rd
ed.). Morgan Kaufmann. – Beti: 123-145
2. Tan, P.-N., Steinbach, M., & Kumar, V. (2018). Introduction to Data Mining (2nd
ed.). Pearson. – Beti: 201-220
3. MacQueen, J. (1967). Some Methods for Classification and Analysis of
Multivariate Observations. Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, 1, 281-297. – Beti: 281-297
4. Xu, R., & Wunsch, D. (2005). Survey of Clustering Algorithms. IEEE
Transactions on Neural Networks, 16(3), 645-678. – Beti: 645-678
5. Tan, P.-N., Steinbach, M., & Kumar, V. (2005). Cluster Analysis: Basic Concepts
and Algorithms. Cambridge University Press. – Beti: 50-75
6. Aggarwal, C. C., & Reddy, C. K. (2013). Data Clustering: Algorithms and
Applications. CRC Press. – Beti: 101-130