SUN’IY INTELLEKTDA OPTIMALLASHTIRISH USULLARINING MATEMATIK MODELLASHTIRILISHI
Keywords:
Kalit so‘zlar: Sun’iy intellekt, neyron tarmoqlar, optimallashtirish algoritmlari, gradient descent, Newton metodi, genetik algoritmlar, matematik modellashtirish, konvergensiya, global minimum, adaptiv learning rate, loss funksiyasi, hisob samaradorligi.Abstract
Annotatsiya: Ushbu maqolada sun’iy intellekt (AI) modellarini o‘qitish
jarayonida ishlatiladigan optimallashtirish usullari matematik jihatdan tadqiq qilinadi.
Gradient descent va uning variatsiyalari, Newton va quasi-Newton metodlari hamda
genetik algoritmlar kabi populyar metodlar solishtiriladi. Muhim e’tibor global
minimumga yaqinlashish, lokal minimumlardan chiqish, konvergensiya tezligi va
hisob resurslaridan foydalanish samaradorligiga qaratiladi. Maqola optimallashtirish
metodlarining afzalliklari va kamchiliklarini ko‘rsatadi hamda "gibrid" yondashuv
orqali optimal yechim taklif etadi.
References
Foydalanilgan adabiyotlar
1. Kingma, D. P., & Ba, J. (2015). Adam: A Method for Stochastic Optimization.
Proceedings of the 3rd International Conference on Learning Representations
(ICLR).
https://arxiv.org/abs/1412.6980
2. Ruder, S. (2017). An Overview of Gradient Descent Optimization Algorithms. arXiv
preprint.
https://arxiv.org/abs/1609.04747
3. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
(AI optimallashtirish algoritmlarining nazariy asoslari haqida asosiy manba)
4. Nocedal, J., & Wright, S. J. (2006). Numerical Optimization (2nd ed.). Springer
Science & Business Media.
(Matematik modellashtirish va Newton metodlari bo‘yicha fundamental manba)
5. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley.
(Genetik algoritmlar nazariyasi uchun asosiy klassik manba)
6. Mirjalili, S. (2019). Evolutionary Algorithms and Neural Networks: Theory and
Applications. Springer.
(Evolyutsion hisoblash va AI integratsiyasi haqida zamonaviy tadqiqot)
7. Bottou, L. (2012). Stochastic Gradient Descent Tricks. In Neural Networks: Tricks
of the Trade (pp. 421–436). Springer.
(SGD optimallashtirish texnikalari bo‘yicha amaliy yondashuv)
8. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2017).
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization.
Journal of Machine Learning Research, 18(1), 6765–6816.
(Optimallashtirishda hyperparametrlarni boshqarish usuli)
9. Schmidhuber, J. (2015). Deep Learning in Neural Networks: An Overview. Neural
Networks, 61, 85–117.
(Neyron tarmoqlarda optimallashtirish jarayonlari haqida umumiy tahlil)
10. Das, S., Suganthan, P. N. (2011). Differential Evolution: A Survey of the State-of-
the-Art. IEEE Transactions on Evolutionary Computation, 15(1), 4–31.
(Evolyutsion algoritmlar va ularning optimallashtirishdagi roli haqida chuqur tahlil)