OPPORTUNITIES OF USING CARTOGRAPHIC METHODS IN TEACHING BIOLOGY IN HIGHER EDUCATION.

Authors

  • Jololdinov Asror Toshtemirovich Author
  • Samijonova Gulzira Esonboy qizi Author

Keywords:

Keywords: Cartography, Geographic Information Systems (GIS), biology education, higher education, spatial thinking, interdisciplinary teaching, thematic mapping, geovisualization, didactic methods.

Abstract

Abstract: The integration of interdisciplinary approaches in higher education is 
pivotal  for  enhancing  the  quality  of  biological  sciences  instruction.  This  article 
explores  the  significant  yet  underutilized  opportunities  presented  by  cartographic 
methods—the science and technology of making and using maps—in teaching biology 
at  the  university  level.  The  modern  biological  sciences,  encompassing  ecology, 
genetics, anatomy, and biogeography, are inherently spatial disciplines. Cartographic 
techniques, particularly  Geographic  Information  Systems  (GIS), thematic  mapping, 
and  geovisualization,  provide  powerful  tools  to  visualize,  analyze,  and  interpret 
complex biological data. This paper analyzes the didactic potential of these methods 
for improving spatial thinking, fostering interdisciplinary understanding, and engaging 
students in active, research-based learning. The analysis concludes that the strategic 
implementation of cartographic tools can transform biology education from a static, 
fact-based discipline into a dynamic, analytical, and problem-solving oriented field, 
thereby  preparing  students  for  the  challenges  of  modern  scientific  research  and 
environmental management. 

References

References

1. National Research Council. (2006). *Learning to Think Spatially: GIS as a Support

System in the K-12 Curriculum*. National Academies Press. p. 25-40.

2. Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W.

(2015). Geographic Information Science and Systems (4th ed.). Wiley. p. 310-330.

3. Jensen, J. R., & Jensen, R. R. (2013). Introductory Geographic Information

Systems. Pearson. p. 40-60.

4. Klingenberg, C. P. (2013). "Visualizing Morphological Data: From Static Images

to Interactive Maps". Journal of Morphology, 274(2), 109-116.

5. Storfer, A., Murphy, M. A., Spear, S. F., Holderegger, R., & Waits, L. P. (2010).

"Landscape Genetics: Where Are We Now?". Molecular Ecology, 19(17), 3496-

3514.

6. Baker, T. R., & White, S. H. (2003). "The Effects of GIS on Students' Attitudes,

Self-efficacy, and Achievement in Middle School Science Classrooms". Journal of

Geography, 102(6), 243-250.

7. Demirci, A., Karaburun, A., & Ünlü, M. (2013). "Implementation and Effectiveness

of GIS-Based Projects in Secondary Schools". Journal of Geography, 112(5), 214-

228.

8. Bodzin, A. M., & Anastasio, D. (2006). "Using Web-Based GIS for Earth and

Environmental Systems Education". Journal of Geoscience Education, 54(3), 295-

300.

9. Hagevik, R., Whitaker, D., & Ebert, C. (2010). "Using Online GIS to Promote

Spatial Reasoning in Science Teachers". Science Educator, 19(2), 40-48.

10. Kerski, J. J. (2015). "Geo-awareness, Geo-enablement, Geotechnologies, Citizen

Science, and Storytelling: Geography for the 21st Century". Geography, 100(3),

152-160.

Published

2025-09-02

How to Cite

Jololdinov Asror Toshtemirovich, & Samijonova Gulzira Esonboy qizi. (2025). OPPORTUNITIES OF USING CARTOGRAPHIC METHODS IN TEACHING BIOLOGY IN HIGHER EDUCATION . Ta’lim Innovatsiyasi Va Integratsiyasi, 52(1), 103-106. https://journalss.org/index.php/tal/article/view/396