“ICHKI KASALLIKLAR VA ENDOKRINOLOGIYADA INNOVATSION DAVOLASH SAMARADORLIGINI TIBBIY TASVIR OBYEKTLARINI TANISH ALGORITMLARI YORDAMIDA OSHIRISH”
Keywords:
Kalit so‘zlar.ichki kasalliklar, endokrinologiya, innovatsion davolash, tibbiy tasvirlar, obyekt tanish algoritmlari, MRI, ultratovush, giperspektral tasvir, segmentatsiya, diagnostik aniqlik.Abstract
Annotatsiya.Ushbu maqola ichki kasalliklar va endokrinologiyada innovatsion
davolash samaradorligini oshirishda tibbiy tasvir obyektlarini tanish algoritmlarining
rolini o‘rganishga bag‘ishlangan. Tadqiqotda MRI, ultratovush va giperspektral
tasvirlardan foydalanib, kasalliklarni aniqlash va davolash jarayonini real vaqt rejimida
kuzatish imkoniyatlari tahlil qilindi. Tasvir obyektlarini avtomatik tanish algoritmlari
yordamida diagnostik aniqlik oshdi, segmentatsiya jarayoni tezlashdi va klinik qaror
qabul qilish jarayoni optimallashtirildi.Integratsiyalashgan yondashuv innovatsion
davolash samaradorligini oshirish va bemor monitoringini yaxshilash imkonini beradi.
References
Foydalanilgan adabiyotlar
1. Pan, C., He, Y., & Zheng, N. “Optical and wireless networks for telemedicine
applications.” IEEE Communications Surveys & Tutorials, 25(2), 2023.
2. U.S. Department of Health and Human Services. HIPAA Security Rule and
Telehealth Guidance, 2023.
3. Saleh, B. E. A., & Teich, M. C. Fundamentals of Photonics. 3rd ed. Wiley, 2019.
4. Agrawal, G. P. Fiber-Optic Communication Systems. 5th ed. Wiley, 2021.
5. Lu, G., & Fei, B. “Medical hyperspectral imaging: a review.” Journal of
Biomedical Optics, 19(1), 2014.
6. Vo-Dinh, T. (Ed.). Biomedical Photonics Handbook. CRC Press, 2020.
7. Koch, M., et al. “Infrared spectroscopy in clinical medicine.” Physics in Medicine
& Biology, 66(10), 2021.
8. American Diabetes Association. “Standards of Medical Care in Diabetes.”
Diabetes Care, 47(S1), 2024.
9. Smith, R., & Dent, G. Modern Raman Spectroscopy: A Practical Approach. Wiley,
2019.
10. Zhang, Y., et al. “IoT-based real-time endocrine monitoring systems: reliability
and performance evaluation.” Sensors, 22(3), 2022.
11. Litjens, G., et al. “A survey on deep learning in medical image analysis.” Medical
Image Analysis, 42, 2017.
12. Ronneberger, O., Fischer, P., & Brox, T. “U-Net: Convolutional Networks for
Biomedical Image Segmentation.” MICCAI, 2015.
13. ITU-T Recommendation G.9959. “Wireless Smart Home Networks – Radio
Technology Requirements.” International Telecommunication Union, 2021.