GIDROTEXNIK INSHOOTLARDA SUV HISOBINI RAQAMLASHTIRISHDA INNOVATSION TEXNOLOGIYALAR
Keywords:
Kalit so‘zlar: gidrotexnik inshoot, zatvor, gidravlik model, suv sarfi, napor, sarf koeffitsiyenti.Abstract
Аnnotatsiya. Suv resurslarining aniq hisobini amalga oshirish, iste’molchiga
kerakli suv miqdorini o‘z vaqtida yetkazib berish bugungi kunda eng dolzarb
masalalardan biridir. Hozirda gidrotexnika inshootlaridan samarali foydalanishda
innovatsion texnologiyalarning zarurati oshib bormoqda. Suv hisobini
raqamlashtirishda turli xil qurilmalar mavjud bo‘lib, ulardan foydalanishda energiya,
iqtisodiy texnologik muammolar qatorida gidravlik jihatlar ham alohida e’tibor talab
etadi. Ma’lumki, gidrotexnik inshootlarda suv sarfi hisobini amalga oshirish va
boshqarishda turli xil darvoza “zatvor”lardan keng foydalaniladi. Gidravlik nuqtayi
nazaridan inshootlardagi darvozalardan suv o‘tishi ancha murakkab jarayon. Suv
sathini nazorat qilish va о‘lchash uchun kо‘p funksiyali qurilmalardan foydalanish
zarurati tug‘iladi. Mazkur maqola gidrotexnik inshootlardan o‘tayotgan suv sarfini
aniqlashni raqamlashtirishga qaratilgan. Gidrotexnik inshootlar zatvorlari ostidan
o‘tayotgan suv sarfini aniqlashda ham yuqori b’efdagi, ham pastki b’efdagi
jarayonlarni inobatga olib, suv hisobini raqamlashtirishning gidravlik modeli ishlab
chiqilgan. Gidrotexnik inshootlar zatvorlarining yuqori va pastki b’eflarida suv sathi
o‘zgarishini vertikal harakatlanadigan yassi gidrotexnik zatvor ko‘tarilishiga bog‘liq
ravishda aniqlashning hisoblash usuli tavsiya etildi. Gidrotexnik inshoot zatvorlarida
suv sathi va sarfini nazorat qilish hamda о‘lchashni boshqarish tizimining strukturaviy
sxemasi ishlab chiqildi.
References
Fodalanilgan adabiyotlar
1. Arifjanov, A. M., & Tojiboyev, S. J. (2021). Qarshi magistral kanalidagi PK-792
to‘suvchi inshootning suvni chiqarish qismida sathni avtomatik rostlab suv
isrofini kamaytirish [Reducing water wastage by automatically adjusting the level
in the water discharge part of the PK-792 barrier structure in the opposite main
channel]. (In Uzbek). Problems and solutions of effective use of water resources
in Uzbekistan: Proceedings of the republic-wide scientific-practical conference,
247–252. Karshi.
2. Arifjanov, A. M., & Tojiboyev, S. J. (2022). Gidrotexnika inshootlaridagi zatvorlar
uchun elektr yuritmasini tanlash [Selection of electric control for valves in
hydraulic facilities]. (In Uzbek). Uzbek Hydropower, 14, 47–49. Tashkent.
3. Arifjanov, A. M., Fatxulloyev, A. M., Rakhimov, K. T., Otakhonov, M. Y., &
Allayorov, D. S. (2022). Changes in hydraulic parameters in canals with sides
lining. IOP Conference Series: Earth and Environmental Science, 1112 (1).
https://doi.org/10.1088/1755-1315/1112/1/012129
4. Arifjanov, A., & Fatxullaev, A. (2020). Natural Studies for Forming Stable
Channel Sections.
Journal of Physics: Conference Series, 1425 (1). https://doi.org/10.1088/1742-
6596/1425/1/012025
5. Bonilla, C., Brentan, B., Montalvo, I., & Izquierdo, J. (2023). Digitalization of
Water Distribution Systems in Small Cities, a Tool for Verification and Hydraulic
Analysis: A Case Study of Pamplona, Colombia. Water, 15 (21), 3824.
https://doi.org/10.3390/w15213824
6. Dulhoste, J. F., Georges, D., & Besancon, G. (2004). Nonlinear control of
openchannel water flow based on collocation control model. Journal of Hydraulic
Engineering, 254–266.
7. Erbisti, P. C. F. (2014). Design of hydraulic gates. CRC Press, 231–234.
8. HC-SR04 ultrasonic rangefinder. (2024). Amperca Ltd.
https://amperka.ru/product/hc-sr04- ultrasonic-sensor-distance-module
9. Kubrak, E., Kubrak, J., Kiczko, A., & Kubrak, M. (2020). Flow Measurments
Using a Sluice Gate. Analysis of Applicability. Water, 12 (3), 819.
https://doi.org/10.3390/w12030819
10. Monem, M. J., & Hosseinzade, Z. (2011, October 15–23). Construction and
Evaluation of Automatic pivot weir control system. ICID 21st International
Congress on Irrigation and Drainage, 450. Tehran, Iran.
11. NM-R Magnetostrictive float level gauge KOBOLD Germany. (2024). Research
and Production Association RIZUR. https://rizur.ru/catalog/poplavkovye-
urovnemery-kobold/poplavkovyy-datchik- urovnya-nm/
12. Rajaratnam, N., & Subramanaya, K. (1967.) Flow equations for the sluice gate.
Irrig. Drain. Eng. ASCE, 93, 167–186.
13. Rao, R. V., & Zhmud, V. A. (2010). The review of the Indo-Russian Joint
Workshop on Computional Intelligence and Modern Heuristics in Automation
and Robotics. Scientific Bulletin of NSTU, 4 (41), 179–182.
14. Sauida, M. F. (2014). Calibration of submerged multi-sluice gates. Alexandria
Engineering Journal, 53 (3), 663–668.
15. Serikbaev, B. S., Barayev, F. A., Sherov, A. G., Serikbaevа, E. B., Omarova, G.
E., & Djumanazarova, A. T. (2014). Gidromeliorativ tizimlardan foydalanish [Use of hydromelioration systems]. Tashkent: TIMI.
16. Silva, C. O., & Rijo, M. (2017). Flow rate measurements under sluice gates. Irrig.
Drain. Eng., 143.
17. Suntaranont, B., et al. (2015). Energy aware flash flood monitoring stations using
a ga-fuzzy logic control mechanism. 2015 IEEE Tenth International Conference
on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP),
1–6. IEEE.
18. Tojiboyev, S. (2018). Modeling of the process of protection of hydrotechnical
structures from pumps. Scientific Knowledge of the Present, 6, 70–74. Kazan.
19. Tojiboyev, S. J, & Ochilov, M. A. (2021). Gidrotexnika inshootida zatvorlar
xolatini raqamlashtirishda qo‘llanuvchi sath datchigi tanlash [Selection of a level
sensor used in the digitalization of the status of valves in a hydraulic facility].
Problems and solutions of effective use of water resources in Uzbekistan:
Proceedings of the republic-wide scientific-practical conference, 273–276.
Karshi.